• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.027 seconds

Study on the Development of Road Icing Forecast and Snow Detection System Using State Evaluation Algorithm of Multi Sensoring Method (복합 센서의 상태 판정 알고리즘을 적용한 노면결빙 예측 및 강설 감지 시스템 개발에 관한 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.113-121
    • /
    • 2013
  • The road icing forecast and snow detection system using state evaluation algorithm of multi sensor optimizes snow melting system to control spread time and amount of chemical spread application This system operates integrated of contact/non-contact sensor and infrared camera. The state evaluation algorithm of the system evaluates road freezing danger condition and snowfall condition (snowfall intensity also) using acquired data such as temperature/humidity, moisture detection and result of image signal processing from field video footage. In the field experiment, it proved excellent and reliable evaluated result of snowfall state detection rate of 89% and wet state detection rate of 94%.

A Study on the Pressure-travel Curve of 5.56mm Rifle Obtained from the Empirical Base Pressure Factor (탄저압력계수를 이용한 5.56mm 소총의 압력-이동거리 곡선 산출)

  • Lee, Sang-Kil;Lee, Gang-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.208-216
    • /
    • 2007
  • As the propellant mass is being accelerated out of the gun chamber along with the projectile, a continuous pressure gradient exists between the end of chamber and the base of the projectile. For this reason, the base pressure-travel curve is very important to design a conventional gun barrel in the interior ballistics, but it is not obtained briefly by empirical or theoretical method. In this paper, a simple relation between chamber pressure and base pressure was determined by the factor of base pressure(Cb) obtained from the experimental method. The simple relation gives a reasonable prediction for the reduction of pressure between the breech and the base of projectile owing to the axial gradient in the gun tube. The predictions have been validated by the infrared screen sensor and the PRODAS(PROjectile Design and Analysis System) for interior ballistic systems. Therefore, the base pressure-travel curve could be calculated from the chamber pressure measured by piezoelectric sensor. The base pressure-travel curve obtained from the simple relation offers initial information to gun barrel designer and is used for calculation of muzzle velocity.

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

A study on the prediction of punch wear level through analysis of piercing load of aluminum (알루미늄 홀 가공 하중 분석을 통한 펀치 마모수준 예측에 관한 연구)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.46-51
    • /
    • 2022
  • The piercing process of creating holes in sheet metals for mechanical fastening generates high shear force. Real-time monitoring technology could predict tool damage and product defects due to this severe condition, but there are few applications for piercing high-strength aluminum. In this study, we analyzed the load signal to predict the punch's wear level during the process with a piezoelectric sensor installed piercing tool. Experiments were conducted on Al6061 T6 with a thickness of 3.0 mm using piercing punches whose edge angle was controlled by reflecting the wear level. The piercing load increases proportionally with the level of tool wear. For example, the maximum piercing load of the wear-shaped punch with the tip angle controlled at 6 degrees increased by 14% compared to the normal-shaped punch under the typical clearance of 6.7% of the aluminum piercing tool. In addition, the tool wear level increased compression during the down-stroke, which is caused by lateral force due to the decrease in the diameter of pierced holes. Our study showed the predictability of the wear level of punches through the recognition of changes in characteristic elements of the load signal during the piercing process.

Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems

  • Jongwon Kim;Eunbi Park;Sungyoon Cho;Kiwon Kwon;Young Myoung Ko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2259-2277
    • /
    • 2023
  • We propose a probabilistic fish growth model for smart aquaculture systems equipped with IoT sensors that monitor the ecological environment. As IoT sensors permeate into smart aquaculture systems, environmental data such as oxygen level and temperature are collected frequently and automatically. However, there still exists data on fish weight, tank allocation, and other factors that are collected less frequently and manually by human workers due to technological limitations. Unlike sensor data, human-collected data are hard to obtain and are prone to poor quality due to missing data and reading errors. In a situation where different types of data are mixed, it becomes challenging to develop an effective fish growth model. This study explores the unique characteristics of such a combined environmental and weight dataset. To address these characteristics, we develop a preprocessing method and a probabilistic fish growth model using mixed data sampling (MIDAS) and overlapping mixtures of Gaussian processes (OMGP). We modify the OMGP to be applicable to prediction by setting a proper prior distribution that utilizes the characteristic that the ratio of fish groups does not significantly change as they grow. We conduct a numerical study using the eel dataset collected from a real smart aquaculture system, which reveals the promising performance of our model.

Prediction of Fire Spread and Real-Time Evacuation System according to Spatial Characteristics (공간적 특성에 따른 화재 확산 예측 및 실시간 대피 시스템 연구)

  • Nam-Gi An;Geon-Hui Lee;Min-jeong Kim;Kyu-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • Among the fire incidents in Korea over the past decade, building fires are the most common, and property and human casualties are the most common. However, the existing fire fighting system does not only inform the location of emergency exits and guide safe routes to help casualties evacuate smoothly. A system was proposed to help successful evacuation by distinguishing vertical and horizontal characteristics using spatial characteristics. In this study, an effective evacuation system was proposed by predicting fires using temperature detection sensors and smoke sensor values, and calculating the optimal evacuation path through the Dijkstra algorithm.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.