• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.027 seconds

Outlier prediction in sensor network data using periodic pattern (주기 패턴을 이용한 센서 네트워크 데이터의 이상치 예측)

  • Kim, Hyung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.433-441
    • /
    • 2006
  • Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

A Study on the Application of GFRP Rock Bolt Sensor through Field Experiment and Numerical Analysis (현장실험과 수치해석을 통한 GFRP 록볼트 센서의 적용성 연구)

  • Lee, Seungjoo;Chang, Suk-Hyun;Lee, Kang-Il;Kim, Bumjoo;Heo, Joon;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.129-138
    • /
    • 2019
  • In this study, the rebar rock bolt sensor and GFRP rock bolt sensor, which can be monitored, were embedded in a large model slope, and the behavior of slopes occurred in the early stage of slope collapse was analyzed after performing the field failure test, numerical analysis of the individual element method and finite element method. By comparing and analyzing the field test and numerical analysis results, field applicability of rock slope collapse monitoring on the rebar rock bolt sensor and GFRP rock bolt sensor was investigated. Through this study, smart slope collapse prediction and warning system was developed, which can be used to induce effective evacuation of residents living in the collapsible area by detecting landslide and ground decay precursor information in advance.

Design of a Smart Safety Measurement System Using Bluetooth Beacon Sensor Nodes (블루투스 비콘 센서 노드를 활용한 스마트 안전 계측 시스템 설계)

  • Park, Young-soo;Park, Chang-jin;Cho, Sun-hee;Park, Kyoung-yong;Kim, Min-sun;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.126-131
    • /
    • 2017
  • This paper designs a smart safety measurement system with Bluetooth beacon sensor nodes that can provide risk detection and evacuation/countermeasure services. The Bluetooth beacon sensor nodes is easily able to be attached to old building wall or construction or civil structure with potential danger. The proposed smart safety measurement system transmits various sensor data such as acceleration, gyroscope, geomagnetic, pressure, altitude, temperature, humidity at the spot where Bluetooth beacon sensor nodes are installed, and we can use them for risk perception, prediction, and warning services. To verify the effectiveness of the proposed system, we performed filed tests which showed that measured displacement values of precast retaining walls were within the permitted displacement value of 38.5 mm.

Application for Disaster Prediction of Reservoir Dam Wireless Sensor Network System based on Field Trial Construction (현장 시험시공을 통한 저수지 댐의 재해예측 무선센서 네트워크 시스템 적용성 평가)

  • Yoo, Chanho;Kim, Seungwook;Baek, Seungcheol;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2019
  • In this present study, to evaluate the applicability of the monitoring system of the entire reservoir dam facility using the wireless sensor network system and a section representative of the domestic reservoir dam was selected as the test bed site and to operated a system that can evaluate the condition of the facility at the real time with monitoring. In order to set up a wireless sensor network system, the system assessment of present state was carried out for confirmation the risk factors and the limit values of the risk factors in limit state were calculated. The type and position of the sensor to be measured in the field were determined by setting the measurement items suitable for the hazardous area and the risk factor. In this paper, we evaluated the feasibility of the system by monitoring and constructing a wireless sensor network system in a field for a fill dam that can represent a domestic reservoir dam. Applicability evaluation was verified by comparing directly with the measurement of partial concentration method which is the measurement management technology of the dam.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.

Development of Virtual Metrology Models in Semiconductor Manufacturing Using Genetic Algorithm and Kernel Partial Least Squares Regression (유전알고리즘과 커널 부분최소제곱회귀를 이용한 반도체 공정의 가상계측 모델 개발)

  • Kim, Bo-Keon;Yum, Bong-Jin
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • Virtual metrology (VM), a critical component of semiconductor manufacturing, is an efficient way of assessing the quality of wafers not actually measured. This is done based on a model between equipment sensor data (obtained for all wafers) and the quality characteristics of wafers actually measured. This paper considers principal component regression (PCR), partial least squares regression (PLSR), kernel PCR (KPCR), and kernel PLSR (KPLSR) as VM models. For each regression model, two cases are considered. One utilizes all explanatory variables in developing a model, and the other selects significant variables using the genetic algorithm (GA). The prediction performances of 8 regression models are compared for the short- and long-term etch process data. It is found among others that the GA-KPLSR model performs best for both types of data. Especially, its prediction ability is within the requirement for the short-term data implying that it can be used to implement VM for real etch processes.

Measurement of Wear and Friction Coefficients for the Prediction of Fretting Wear (프레팅 마멸계수 및 마찰계수 측정에 관한 연구)

  • Cho, Yong Joo;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.124-129
    • /
    • 2012
  • The prediction of fretting wear is a significant issue for the design of contacting mechanical components such as flexible couplings and splines, jointed structures and so on. In our earlier study, we developed a numerical model to predict the fretting wear using boundary element method. The developed algorithm needs experimental fretting wear coefficients and friction coefficients between two moving materials to get more reliable results. In this study, therefore, we demonstrated the measurement method of the fretting wear coefficients and friction coefficients using disk on plate tribometer with piazo actuator and gap sensor. For four different material combinations, the fretting wear coefficients and friction coefficients are acquired through the fretting wear experiment and the analysis of the measured values. Thess results are useful to predict the quantative fretting wear rate in the developed algorithm.