• Title/Summary/Keyword: sensor noise

Search Result 1,786, Processing Time 0.034 seconds

Weighted polynomial fitting method for estimating shape of acoustic sensor array (음향 센서 배열 형상 추정을 위한 가중 다항 근사화 기법)

  • Kim, Dong Gwan;Kim, Yong Guk;Choi, Chang-ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • In modern passive sonar systems, a towed array sensor is used to minimize the effects of own ship noise and to get a higher SNR. The thin and long towed array sensor can be guided in a non-linear form according to the maneuvering of tow-ship. If this change of the array shape is not considered, the performance of beamformer may deteriorate. In order to properly beamform the elements in the array, an accurate estimate of the array shape is required. Various techniques exist for estimating the shape of the linear array. In the case of a method using a heading sensor, the estimation performance may be degraded due to the effect of heading sensor noise. As means of removing this potential error, weighted polynomial fitting technique for estimating array shape is developed here. In order to evaluate the performance of proposed method, we conducted computer simulation. From the experiments, it was confirmed that the proposed method is more robust to noise than the conventional method.

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

Optimal Design of a Piezoelectric Smart Structure for Cabin Noise Control (실내 소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;이중근;김재환;최승복;정재천
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.428-434
    • /
    • 1998
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectirc actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction. To see the robustness of the optimally designed result, the configuration is used to examine the noise reduction at different frequencies. By adjusting the gain at each frequencies, it is possible to reduce the noise in comparison with the result when the actuator is not activated.

  • PDF

Implementation of an Integrated Pressure-sensor System Adapted to the Optimum Sensitivity

  • Hong, Sung-Hee;Cho, Chun-Hyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.186-191
    • /
    • 2017
  • An integrated pressure-sensor system was developed using the sensor-conditioning processes, which resulted in the optimum sensitivity of the pressure-sensor through the signal amplification, noise reduction, and level shift. Due to the specified characteristics among the components, such as operation range, the sensor output was generally limited compared to the full scale of the reading when coupled with other parts. Devices fabricated exhibited comparable characteristics with higher pressure sensitivity to that of the pressure sensor without sensor-conditioning process. In this work, the sensor resolution was at least enhanced at least by 25% using the sensor-conditioning processes.

Development of Capacitive Water Level Sensor System for Boiler (보일러용 정전용량형 수위센서 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.103-107
    • /
    • 2021
  • In this paper, a capacitive water level sensor for boilers was developed. In order to accurately monitor the water level in a high-temperature boiler that generates a lot of precipitates, the occurrence of precipitates on the surface of the water level sensor should be small, and a sensor capable of measuring even if the sensor surface is somewhat contaminated is required. The capacitive water level sensor has a structure in which one of the two electrodes is insulated with Teflon coating, and the stainless steel package of the water level sensor is brought into contact with the water tank so that the entire water tank becomes another electrode of the water level sensor. A C-V converter that converts the capacitance change of the capacitive water level sensor into a voltage change was developed and integrated with the water level sensor to minimize noise. The performance of the developed capacitive water level sensor was evaluated through measurement.

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF