• Title/Summary/Keyword: sensor noise

Search Result 1,786, Processing Time 0.027 seconds

Current Status of Ocean Satellite Remote Sensing Data and Its Distribution (해양의 인공위성 자료 현황과 배포 소개)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.51-55
    • /
    • 2007
  • As for satellite programs, the multipurpose satellite 1(KOMPSAT-1) was successfully launched on Dec. 21, 1999 and operated for three years. It is still properly operated even though its life cycle was ended. The development of KOMPSAT-2 (Korea Multipurpose Satellite-2) is near completion and the development of KOMPSAT-3, KOMPSAT-5 and COMS (Communication, Ocean, Meterological Satellite) are proceeding swiftly. In KORDI(Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2000. Ansan(the headquarter of KORDD has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified antenna and RF. Antenna is designed to be ${\emptyset}$ 9m cassegrain antenna which has 19.35 $G/T(dB/^{\circ}K)$ at 1.67GHz, RF module, is divided into LNA(Low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem The existing building is re-designed and classified for the KOSC operation concept; computing room, board of electricity, data processing room, operation room Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet, and it is also being considered constructing outer data distribution system as a web hosting service for to offering received data to user under an hour.

  • PDF

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends

  • Diaz Lantada, A.;Lafont Morgado, P.;Munoz-Guijosa, J.M.;Munoz Sanz, J.L.;Echavarri Otero, J.;Chacon Tanarro, E.;De la Guerra Ochoa, E.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.517-539
    • /
    • 2014
  • The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.

Deep Learning based BER Prediction Model in Underwater IoT Networks (딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델)

  • Byun, JungHun;Park, Jin Hoon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.41-48
    • /
    • 2020
  • The sensor nodes in underwater IoT networks have practical limitations in power supply. Thus, the reduction of power consumption is one of the most important issues in underwater environments. In this regard, AMC(Adaptive Modulation and Coding) techniques are used by using the relation between SNR and BER. However, according to our hands-on experience, we observed that the relation between SNR and BER is not that tight in underwater environments. Therefore, we propose a deep learning based MLP classification model to reflect multiple underwater channel parameters at the same time. It correctly predicts BER with a high accuracy of 85.2%. The proposed model can choose the best parameters to have the highest throughput. Simulation results show that the throughput can be enhanced by 4.4 times higher than the conventionally measured results.

A hardware architecture based on the NCC algorithm for fast disparity estimation in 3D shape measurement systems (고밀도 3D 형상 계측 시스템에서의 고속 시차 추정을 위한 NCC 알고리즘 기반 하드웨어 구조)

  • Bae, Kyeong-Ryeol;Kwon, Soon;Lee, Yong-Hwan;Lee, Jong-Hun;Moon, Byung-In
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2010
  • This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.

Signal Analysis for Detecting Abnormal Breathing (비정상 호흡 감지를 위한 신호 분석)

  • Kim, Hyeonjin;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • It is difficult to control children who exhibit negative behavior in dental clinics. Various methods are used for preventing pediatric dental patients from being afraid and for eliminating the factors that cause psychological anxiety. However, when it is difficult to apply this routine behavioral control technique, sedation therapy is used to provide quality treatment. When the sleep anesthesia treatment is performed at the dentist's clinic, it is challenging to identify emergencies using the current breath detection method. When a dentist treats a patient that is under the influence of an anesthetic, the patient is unconscious and cannot immediately respond, even if the airway is blocked, which can cause unstable breathing or even death in severe cases. During emergencies, respiratory instability is not easily detected with first aid using conventional methods owing to time lag or noise from medical devices. Therefore, abnormal breathing needs to be evaluated in real-time using an intuitive method. In this paper, we propose a method for identifying abnormal breathing in real-time using an intuitive method. Respiration signals were measured using a 3M Littman electronic stethoscope when the patient's posture was supine. The characteristics of the signals were analyzed by applying the signal processing theory to distinguish abnormal breathing from normal breathing. By applying a short-time Fourier transform to the respiratory signals, the frequency range for each patient was found to be different, and the frequency of abnormal breathing was distributed across a broader range than that of normal breathing. From the wavelet transform, time-frequency information could be identified simultaneously, and the change in the amplitude with the time could also be determined. When the difference between the amplitude of normal breathing and abnormal breathing in the time domain was very large, abnormal breathing could be identified.

Particle filter for Correction of GPS location data of a mobile robot (이동로봇의 GPS위치 정보 보정을 위한 파티클 필터 방법)

  • Noh, Sung-Woo;Kim, Tae-Gyun;Ko, Nak-Yong;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.381-389
    • /
    • 2012
  • This paper proposes a method which corrects location data of GPS for navigation of outdoor mobile robot. The method uses a Bayesian filter approach called the particle filter(PF). The method iterates two procedures: prediction and correction. The prediction procedure calculates robot location based on translational and rotational velocity data given by the robot command. It incorporates uncertainty into the predicted robot location by adding uncertainty to translational and rotational velocity command. Using the sensor characteristics of the GPS, the belief that a particle assumes true location of the robot is calculated. The resampling from the particles based on the belief constitutes the correction procedure. Since usual GPS data includes abrupt and random noise, the robot motion command based on the GPS data suffers from sudden and unexpected change, resulting in jerky robot motion. The PF reduces corruption on the GPS data and prevents unexpected location error. The proposed method is used for navigation of a mobile robot in the 2011 Robot Outdoor Navigation Competition, which was held at Gwangju on the 16-th August 2011. The method restricted the robot location error below 0.5m along the navigation of 300m length.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Development of the On-line Ultrasonic Detecter for Transformer Applied Noise Rejection Algorithm (노이즈 제거 알고리즘을 적용한 변압기 초음파 상시 측정장치 개발)

  • 권동진;진상범;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.80-91
    • /
    • 2002
  • An on-line ultrasonic detector was developed to continuously monitor the ultrasonic signal due to partial discharge in transformer in service. The on-line ultrasonic detector has a band-pass filter designed to measure only the frequencies from 50 to 300[㎑] of ultrasonic signal, to remove electrical and mechanical noises from outside of the transformer, and tlle ultrasonic sensor contains a pre-amplifier with 60[dB] gain. The ultrasonic signal discrimination algorithm which discriminates the ultrasonic signal duration was developed to remove the ultrasonic signal due to OLTC operation having similar characteristics to those due to partial discharge. The reliability of the on-line ultrasonic detector developed in this study was convinced of measurement the ultrasonic signals from the model. transformer in laboratory and transformer in service.

Gesture Recognition Using Stereo Tracking Initiator and HMM for Tele-Operation (스테레오 영상 추적 자동초기화와 HMM을 이용한 원격 작업용 제스처 인식)

  • Jeong, Ji-Won;Lee, Yong-Beom;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2262-2270
    • /
    • 1999
  • In this paper, we describe gesture recognition algorithm using computer vision sensor and HMM. The automatic hand region extraction has been proposed for initializing the tracking of the tele-operation gestures. For this, distance informations(disparity map) as results of stereo matching of initial left and right images are employed to isolate the hand region from a scene. PDOE(positive difference of edges) feature images adapted here have been found to be robust against noise and background brightness. The KNU/KAERI(K/K) gesture instruction set is defined for tele-operation in atomic electric power stations. The composite recognition model constructed by concatenating three gesture instruction models including pre-orders, basic orders, and post-orders has been proposed and identified by discrete HMM. Our experimental results showed that consecutive orders composed of more than two ones are correctly recognized at the rate of above 97%.

  • PDF

A Study on the Ground S/W Simulator for the Test of a Star Tracker (별센서 시험을 위한 지상 S/W 시뮬레이터 연구)

  • Lee, Hyeon Jae;Bang, Hyo Chung;Jeong, Dae Won;Seok, Byeong Seok;Kim, Hak Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.117-123
    • /
    • 2003
  • One of the most important elements in satellite attitude control is sensor technology. Generally, inertial sensors introduce drift and noise which cause continuous errors. Absolute reference is needed to eliminate the problem of the inertial sensors. Star trackers are used primarily for such a purpose. There has been relatively less research effort or ground feasibility test experience on star trackers in the domestic side despite the importance of the associated technologies. In this paper, we re-introduce the basic concept of a star tracker and present the S/W simulator for the star tracker. The star simulator may be used ground test of a star tracker for the basic functioning test or the whole spacecraft test with the star tracker assembled.