• Title/Summary/Keyword: sensor noise

Search Result 1,786, Processing Time 0.038 seconds

Robust Estimation of Position and Direction Based on Robot Velocity in the Inner GPS Environment (실내 GPS 환경에서 로봇의 이동속도기반 강인한 위치 및 방향 추정)

  • Kim, Sung-Suk;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2010
  • The accurate estimation of position and direction of the mobile robot is essential for preparing precise movement and works in the inner complex environment. In this paper, we propose a robust estimation method of location and direction using the velocity of mobile robot in the inner GPS environment. The estimation using the inner GPS with ultrasonic sensors have to consider with various acoustic noise and sensor errors. We design a robust estimation method using a membership function based on uncertainty of the obtained information and robot velocity. The simulation results of the proposed method show effectiveness in the contaminated environment with position errors.

Comparison of Fusion Methods for Generating 250m MODIS Image

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2010
  • The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor has 36 bands at 250m, 500m, 1km spatial resolution. However, 500m or 1km MODIS data exhibits a few limitations when low resolution data is applied at small areas that possess complex land cover types. In this study, we produce seven 250m spectral bands by fusing two MODIS 250m bands into five 500m bands. In order to recommend the best fusion method by which one acquires MODIS data, we compare seven fusion methods including the Brovey transform, principle components algorithm (PCA) fusion method, the Gram-Schmidt fusion method, the least mean and variance matching method, the least square fusion method, the discrete wavelet fusion method, and the wavelet-PCA fusion method. Results of the above fusion methods are compared using various evaluation indicators such as correlation, relative difference of mean, relative variation, deviation index, peak signal-to-noise ratio index and universal image quality index, as well as visual interpretation method. Among various fusion methods, the local mean and variance matching method provides the best fusion result for the visual interpretation and the evaluation indicators. The fusion algorithm of 250m MODIS data may be used to effectively improve the accuracy of various MODIS land products.

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

Signal processing method of bubble detection in sodium flow based on inverse Fourier transform to calculate energy ratio

  • Xu, Wei;Xu, Ke-Jun;Yu, Xin-Long;Huang, Ya;Wu, Wen-Kai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3122-3125
    • /
    • 2021
  • Electromagnetic vortex flowmeter is a new type of instrument for detecting leakage of steam generator, and the signal processing method based on the envelope to calculate energy ratio can effectively detect bubbles in sodium flow. The signal processing method is not affected by changes in the amplitude of the sensor output signal, which is caused by changes in magnetic field strength and other factors. However, the detection sensitivity of the electromagnetic vortex flowmeter is reduced. To this end, a signal processing method based on inverse Fourier transform to calculate energy ratio is proposed. According to the difference between the frequency band of the bubble noise signal and the flow signal, only the amplitude in the frequency band of the flow signal is retained in the frequency domain, and then the flow signal is obtained by the inverse Fourier transform method, thereby calculating the energy ratio. Using this method to process the experimental data, the results show that it can detect 0.1 g/s leak rate of water in the steam generator, and its performance is significantly better than that of the signal processing method based on the envelope to calculate energy ratio.

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

Detection and Damping Recognition of Normal Frequency Using Fast Fourier Transform in the Vibration Acceleration Analysis System (진동가속도 분석시스템에서 고속푸리에변환을 이용한 기준진동수의 검출 및 감쇠인식)

  • Kim, Hwang Jun
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.16-20
    • /
    • 2019
  • Fast Fourier Transform in the vibration acceleration analysis system has recently been utilized in the field of sensor measurement. In this paper, we propose a Fast Fourier Transform based method of detecting the normal frequency among the many frequency types of diffuse field. This normal frequency is expressed by the formula of frequency damping recognition which is calculated in a similar way to the octave center frequency. Based on this theory, this paper can more accurately inform noise producers of the degree of damping, which is different from the vibration type of diffuse field.

Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity (딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법)

  • Kim, Hyun-Koo;Yoo, Kook-Yeol;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.

Image compression using K-mean clustering algorithm

  • Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.275-280
    • /
    • 2021
  • With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.