• Title/Summary/Keyword: sensor noise

Search Result 1,786, Processing Time 0.024 seconds

Collocation of Sensor and Actuator for Active Control of Sound and Vibration (능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구)

  • 이영섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.253-263
    • /
    • 2004
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered. but this pair suffers from the in-plane motion coupling problem with the out-of-plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFBcontrol. As a new alternative, a point sensor and distributed piezoelectric actuator pair is also considered, which provides SPR property in all frequency range when the pair is implemented on a clamped-clapmed beam. The use of this sensor-actuator pair is highly expected for the applications to more practical active control of sound and vibration systems with the DVFB control strategy.

Design Parameters of a RF Transceiver for Sensor Nodes (센서노드용 RF 송수신기의 설계 파라미터)

  • Kang, Sang-Gee;Choi, Heung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.854-859
    • /
    • 2009
  • Many pilot projects are developed using USN(Ubiquitous Sensor network). Recently USN has more attention to be used for the applications of circumstance monitoring. In order to acquire information from sensor nodes, sensor nodes need a RF transceiver. In this paper we describe the design of a RF transceiver, based on IEEE 802.15.4, for sensor nodes operating in 2.4GHz frequency band. The architecture to be implemented and the electrical performance specifications satisfied IEEE 802.15.4 are presented. The noise figure of a receiver, selectivity, phase noise of a frequency synthesizer, transmitter's linearity and spectrum mask are derived as a design parameters from the specifications of IEEE 802.15.4.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

A Low Power SAR ADC with Enhanced SNDR for Sensor Application (신호 대 잡음비가 향상된 센서 신호 측정용 저 전력 SAR형 A/D 변환기)

  • Jung, Chan-Kyeong;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • This paper describes a low-power, SNDR (signal-to-noise and distortion ration) enhanced SAR (successive approximation register) type 12b ADC (analog-to-digital converter) with noise shaping technique. For low power consumption and small chip size of the DAC (digital-to-analog converter), the top plate sampling technique and the dummy capacitor switching technique are used to implement 12b operation with a 10b capacitor array in DAC. Noise shaping technique is applied to improve the SNDR by reducing the errors from the mismatching of DAC capacitor arrays, the errors caused by attenuation capacitor and the errors from the comparator noise. The proposed SAR ADC is designed with a $0.18{\mu}m$ CMOS process. The simulation results show that the SNDR of the SAR ADC without the noise shaping technique is 71 dB and that of the SAR ADC with the noise shaping technique is 84 dB. We can achieve the 13 dB improvement in SNDR with this noise shaping technique. The power consumption is $73.8{\mu}W$ and the FoM (figure-of-merit) is 5.2fJ/conversion-step.

Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정)

  • Lee, DaeHee;Yang, Yeon-Mo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.418-422
    • /
    • 2013
  • This paper has considered the location estimation problem in two dimension space by using a non-linear filter under non-Gaussian noise in underwater acoustic sensor networks(UASNs). Recently, the extended Kalman filter (EKF) is widely used in location estimation. However, the EKF has a lot of problems in the non-linear system under the non-gaussian noise environment like underwater environment. In this paper, we propose the improved Two-Dimension Particle Filter (TDPF) using the re-interpretation distribution techniques based on the maximum likelihood (ML). Through the simulation, we compared and analyzed the proposed TDPF with the EKF under the non-Gaussian underwater sensor networks. Finally, we determined that the TDPF's result shows more accurate localization than EKF's result.

Oxygen Permeability Characteristics of the Multi-Cathode Type Dissolved Oxygen Sensor Using the Low Noise Measuring Circuit (저잡음화 계측회로에 의한 다음극형 용존산소센서의 산소투과특성)

  • Rhie, Dong-Hee;Kim, T.J.;Kim, Y.H.;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.764-766
    • /
    • 1998
  • An evaluation method for oxygen permeable characteristics of the membrane covering to each cathode of multiple cathode - single anode type dissolved oxygen sensor, which has high reproducibility and is capable of measuring multiple components in solutions. For this purpose, a measuring circuit for the multiple cathode type DO sensor was designed to lower the noise signal by adapting a digital LPF to readout the sensor output accurately. Digital LPF is designed by setting up the transfer function to set the cutoff frequency to 10Hz, and the transfer function is programmed by C language, and then the filtering characteristics are evaluated with the simulation and experiments. Using this LPF added measuring circuit for the multiple cathode type DO sensor, we have obtained the calibration factor for each cathode to calibrate the variation of the output signals. The calibration factor was obtained by measuring the sensor output signal followed by oxygen partial pressure, using the same oxygen permeable membrane at each cathode of the multiple cathode type DO sensor.

  • PDF

Development of a hygroscopic polymer-coated QCM humidity sensor and its characteristics (감습 고분자막이 코팅된 수정미소저울 습도센서 제작 및 특성연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il;Nham, Hyun-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.395-401
    • /
    • 2005
  • A highly stable quartz crystal microbalance (QCM) that showed a stability of frequencies and exhibited a very low noise level has been developed. The long-term drift was <0.05 Hz/h over a period of 10 h, and the short-term rms (root mean square) noise was <0.015 Hz. Our QCM sensor was used as a humidity sensor employing a poly(methyl methacrylate) (PMMA) polymer film as a hygroscopic layer, which showed good characteristics in the relative humidity (RH) range of $2{\sim}90%$ RH. Comparing the characteristics of the QCM sensor with those of other types of humidity sensors employing PMMA film as a hygroscopic layer, and with other QCM sensors employing other hygroscopic layers is represented.

Human detecting pyroelectric infrared sensor system using new electrode design (새로운 전극 설계법을 이용한 인체 감지형 초전형 적외선 센서 시스템)

  • 권성열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.74-78
    • /
    • 2002
  • For human detecting pyroelectric infrared sensor system using more than 2 sensor devices. By new top and bottom electrode design, 1 sensor can sensing human instead of using 2 sensor system. The poled P(VDF/TrFE) film used for sensor pyroelectric materials. The fabricated sensors NEP (noise equivalent power) and specific detectivity D$^*$ of the device were 9.62 $\times$ 10$10^5$ V/W, 3.95 $\times$ 10$10^-175$ W and 5.06 $\times$ 10$10^5$W under emission energy of 13 ${\mu}W/cm^2$ respectively and It's result is almost same result that using more than 2 sensor system for human detecting.

  • PDF