• Title/Summary/Keyword: sensor geometry

Search Result 236, Processing Time 0.027 seconds

Study on the Torque Calculation of Touch Free Gear Using Permanent Magnet (영구자석형 비접촉식 동력전달 기어의 전달토크에 관한 연구)

  • Boo Kwangsuck;Choi Young;Yeo Hongtae;Lee Jongil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.119-126
    • /
    • 2004
  • Permanent magnetic gears are magneto-mechanical devices that are widely used to replace the ordinary mechanical gear and to transmit torque without the mechanical contact. This study investigates the characteristics of touch free permanent magnetic gear according to the employing systems. The effect of the magnetic torque is analyzed by using 3 dimensional Finite Element Method (FEM). To estimate the transmission torque of FEM model, the numerical results are compared with the experimental results. The influences of geometry size, magnet number on transmission torque are obtained. As results of this paper, it is confirmed that the transmission torque behavior is associated with the configuration of the magnet numbers and the air gap between the two permanent magnetic gears.

Sub-surface imaging and vector precision from high resolution down-hole TEM logging

  • Chull, James;Massie, Duncan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.11-18
    • /
    • 2005
  • Filament inversion routines are highly effective for target definition whenever total-field DHTEM vectors can be obtained using three-component logging tools. However most cross-hole components contain significant noise related to sensor design and errors in observation of probe rotation. Standard stacking methods can be used to improve data quality but additional statistical methods based on cross-correlation and spatial averaging of orthogonal components may be required to ensure a consistent vector migration path. Apart from assisting with spatial averaging, multiple filaments generated for successive time-windows can provide additional imaging information relating to target geometry and current migration. New digital receiver systems provide additional time-windows to provide better tracking options necessary for high-resolution imaging of this type.

  • PDF

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Sensing of ultra-low magnetic field by magnetoelectric (ME) composites (자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술)

  • Hwang, Geon-Tae;Song, Hyunseok;Jang, Jongmoon;Ryu, Jungho;Yoon, Woon-Ha
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

Location of Partial Discharge in Power Transformer Using Ultrasonic Signal's Characteristic with Medium. (매질에 따른 초음파 신호의 특성을 이용한 변압기내 부분방전 위치 추정)

  • Seo, In-Chul;Kim, Young-No;Jeon, Young-Jae;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.136-138
    • /
    • 2000
  • This paper describes an efficient location detection algorithm for a partial discharge(PD) source in the transformer. The algorithm is previously proposed is not suitable for PD source detection because ultrasonic signal is diminished through the inner structure. In this paper, the proposal algorithm find PD source using geometry method and 3th sensor on the one side of transformer without diminution of ultrasonic signal. The proposed algorithm demonstrates the effectiveness and validity on model transformer.

  • PDF

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

Optical Path Analysis and Experiments for Optical Microphone (광 마이크로폰 개발을 위한 광 경로해석 및 실험)

  • Kwon, Hyu-Sang;Kim, Kyong-Woo;Kim, Jin-Ki;Che, Woo-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.210-217
    • /
    • 2007
  • The theoretical formulations are derived for calculating optical power change for intensity modulated fiber optical microphone. The optical power change is due to optical paths, misalignment and geometry of optical coupler. Based on the theoretical equations, three different optical couplers are simulated with respect to several angles of optical couplers. In order to evaluate the formulation, a multi-mode to multi-mode coupler which is one of abovementioned optical couplers is designed and characterized by carving out both static experiments and dynamic experiments. Considering experimental results, this paper conclude that the theoretical formulations is very useful for design optical coupler and this kind of fiber optic sensor is adequate to microphone.

A New Algorithm for Resolving Narrowband Coherent Signals Incident on a General Array (임의 배열 안테나로 입사하는 협대역 코히어런트 신호의 분리를 위한 새로운 알고리즘)

  • 박형래;김영수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.989-1002
    • /
    • 1995
  • In this paper, we propose a new algorithm, so called the Signal Decorrelation via Virtual Translation of Array (SDVTA) algorithm, for estimating the directions of arrival(DOA's) of narrowband coherent signals incident on a general array. An effective procedure is composed of transforming the steering matrix of the original array into that of the virtually translated sensor array and taking the average of the transformed covariance matrices in order to decorrelate the coherent signals. The advantage of this approach is in that 1) it can estimate the DOA's of m-1 coherent signals(M : the number of array sensors) since the effective aperture size is never reduced. 2) a geometry of array is unrestricted for solving the narrowband coherency problem. 3) the efficiency of signal decorrelation does not depend on the phase differences between coherent signals unlike the Coherent Signal Subspace Method (CSM). Simulation results are illustrated to demonstrate the superior performance of this new algorithm in comparison with the normal MUSIC and examine the comparative performance with the various choices of the optimal transformation matrix under coherent signal environments.

  • PDF

A Study on the Relationship of Surface Shape and Tool Runout in the Ball-End Milling (경사면 가공에서 공구의 런아웃과 표면 형상과의 관계에 관한 연구)

  • 박희범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.591-596
    • /
    • 1999
  • Due to the development of CNC machining centers and the complexity of machined part geometry, the ball-end milling became the most widely used the cutting process. Generally, the tool runout defined as the eccentricity of a rotating tool set in the holder involved the spindle runout and the problem of tool runout generated to remove the workpiece is a main factor affecting the machining accuracy. In this paper, the relationship of tool runout(zero-to-peak, P-K) and surface shape on the change of cutting conditions is studied and it is proposed the probability of prediction of surface shape from the in-process tool runout measurements with high response displacement sensor in the ball-end milling

  • PDF

A study on the flatness of automotive torque-angle sensors (자동차 토크앵글센서(TAS)의 평면 정밀도에 관한 연구)

  • Yoon, Sean-Jhin;Cho, Yong-Moo
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • In this study, we proposed three analysis methods to calculate the flatness of torque-angle sensors (TAS). We introduced two statistical and one geometrical methods in evaluating the precision of the flat plane in the axis direction for TAS. To verified the results, we fabricated TAS and a reference sample using a injection molding machine, mold, polyester as a raw material. We measured ($x_i$, $y_i$) position using 3D contact automated system and applied three analysis methods developed for TAS and a reference sample to see the feasibility. While each analysis method has its own pros and cons, the analysis using the shortest optimal distance was the most precise technique for the flatness evaluation of TAS components.