• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.03 seconds

Magnetic Flux Leakage Method based Local Fault Detection for Inspection of Wire Rope (승강기 와이어로프 진단을 위한 누설자속기법 기반 국부손상 진단)

  • Kim, Ju-Won;Park, Ju-Young;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.417-423
    • /
    • 2015
  • In this study, Magnetic Flux Leakage(MFL)-based inspection system was applied to detect the local fault of wire rope. To verify the feasibility of the proposed damage detection technique, an 4-channel MFL sensor head prototype was designed and fabricated. A wire rope with several types of cross-sectional damages were fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the wire rope specimen. To interpret the condition of the wire rope, magnetic flux signals were used to determine the locations of the flaws. To improve the resolution of signal, the instantaneous variation value of magnetic flux was utilized. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

Development of Gas Measurement System for the Harmful Gases at Livestock Barn (축산생육환경 유해가스 모니터링을 위한 무선가스측정시스템 개발)

  • Kim, Young Wung;Paik, Seung Hyun;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.314-321
    • /
    • 2012
  • Harmful gases which are generated from various rout at growth environment of livestock ban have a direct and indirect bad influence to the livestock and farmers, and also step-up breeding density and long-term exposure to the sealed environment of winter can be fatal. In this paper, we propose a gas measurement system for monitoring gases of ammonia, hydrogen sulfide, volatile organic compounds, etc. which arise from the muck. The measurement system consist of both wireless gas sensor node and gas recognition software using a Fuzzy Min-Max neural network. To evaluate the performance of suggested system, gas measurement experiments are performed in laboratory environment by using the designed wireless gas sensor node. And we show the performance through classification test for the target gases by the designed gas recognition software.

Real-time Internal Stress of Nickel Sulfamate Electroform (니켈쌀파메이트 전주층의 실시간 잔류응력)

  • Kim I.;Kang K.;Lee J.;Kwon S.C.;Kim M.;Lee J.Y.
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • The control of internal stress is extremely important in electroforming because of the deliberately low adhesion between the electro form and the mandrel. Excessive tensile or compressive stress can cause distortion, separation problem, curling, peeling or separation of electroform prematurely from the mandrel, buckling and blistering. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. In this study, real-time stress sensor has been used for stress control in chloride-free nickel sulfamate bath for 400 mm x 300 mm x 500 ㎛ nickel electroform. It was found that compressive stress found at low current density indicated the contamination of electrolyte, which is very useful in procuring buckling and peeling of electroform. No compressive stress is allowed for plate electroform. The real-time stress can also be used for accurate stress control of nickel electroform. The tensile stress was found to be increased slightly with increase in nickel electroform thickness, i.e., from initial 1.47 ksi to 2.02 ksi at 320 ㎛.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

SnO2 Semiconducting Nanowires Network and Its NO2 Gas Sensor Application (SnO2 반도체 나노선 네트웍 구조를 이용한 NO2 가스센서 소자 구현)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Choi, Si-Hyuk;Park, Jae-Gwan;Park, Jae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.223-227
    • /
    • 2010
  • Recently, one-dimensional semiconducting nanomaterials have attracted considerable interest for their potential as building blocks for fabricating various nanodevices. Among these semiconducting nanomaterials,, $SnO_2$ nanostructures including nanowires, nanorods, nanobelts, and nanotubes were successfully synthesized and their electrochemical properties were evaluated. Although $SnO_2$ nanowires and nanobelts exhibit fascinating gas sensing characteristics, there are still significant difficulties in using them for device applications. The crucial problem is the alignment of the nanowires. Each nanowire should be attached on each die using arduous e-beam or photolithography, which is quite an undesirable process in terms of mass production in the current semiconductor industry. In this study, a simple process for making sensitive $SnO_2$ nanowire-based gas sensors by using a standard semiconducting fabrication process was studied. The nanowires were aligned in-situ during nanowire synthesis by thermal CVD process and a nanowire network structure between the electrodes was obtained. The $SnO_2$ nanowire network was floated upon the Si substrate by separating an Au catalyst between the electrodes. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structure. By varying the nanowire density and the distance between the electrodes, several types of nanowire network were fabricated. The $NO_2$ gas sensitivity was 30~200 when the $NO_2$ concentration was 5~20ppm. The response time was ca. 30~110 sec.

An Optical Technique for Concentration Measurement by Color Analysis (반사형 소자를 이용한 시료의 컬러정보 및 농도분석)

  • Lee, Tae-Hee;Kim, Ji-Sun;Jung, Gu-In;Choi, Ju-Hyeon;Oh, Han-Byeol;Kim, A-Hee;Jung, Hyon-Chel;Cho, Yeong Bin;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1121-1127
    • /
    • 2014
  • Many studies have been done to measure and analyze color for various purposes. Visual assessment has lack of objectivity and the equipment for color measurement is very expensive. In this study, we developed a device for quantitative analysis of the color using optical elements. With the color sensor, the ratio of RGB was calculated by measuring the light intensity that is reflected from an object. Inverse transformation of optical signal was performed to detect the color density. The suggested color analyzer can detect color information as well as sample concentration. Results of this study are expected to be used in various medical fields such as pH indicator and urine analysis.

On the Effect of Tube Attenuation on Measuring Water Vapor Flux Using a Closed-path Hygrometer (폐회로 습도계를 이용한 수증기 플럭스 관측시관의 감쇠 효과에 관하여)

  • Hong Jinkyu;Kim Joon;Choi Taejin;Yun Jin-il;Tanner Bert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.3
    • /
    • pp.80-86
    • /
    • 2000
  • Eddy covariance method is widely used in measuring vertical fluxes of mass and energy between the atmosphere and the biosphere. In this method, scalar concentration is measured with either open-path or closed-path sensors. For the latter, fluctuations of scalar concentration are attenuated as the sample travels through a long tube, resulting in flux loss. To quantify this tube attenuation, water vapor concentrations measured with both closed-path and open-path sensors were analyzed. Our statistical analysis showed that the power spectral density obtained from the closed-path sensor was different from that from the open-path sensor in the frequency range of > 0.5 Hz. The loss of water vapor flux due to tube attenuation was < 5% during midday. At nighttime, however, the flux loss increased significantly because of the low wind speeds and the weak turbulence sources. Theoretical calculation for the tube attenuation showed a small bias in high frequency range probably because of the interaction of sticky water vapor with a tube wall.

  • PDF

COMS DATS Implementation and Test (통신해양기상위성 데이터 송수신 서브시스템의 구축 및 시험)

  • Park, Durk-Jong;Kim, Su-Jin;Ahn, Sang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • DATS which is one of three subsystems of IDACS is responsible to receive Sensor Data, LRIT and HRIT in L-Band and transmit LRIT and HRIT in S-Band from/to COMS satellite. This paper shows detailed test procedures used to verify the performance and functionality of DATS after its implementation was completely finished. As a part of efforts to verify key DATS performance, G/T and EIRP were measured by using solar flux density as radio source. Regarding the verification of DATS functionality, RF loop-back test was conducted to validate if there is no BER degradation excepting MODEM/BB implementation loss occurred in the integrated DATS. Integrated with 13m antenna, DATS successfully restored image from received MTSAT-1R broadcasting data, LRIT and HRIT, of which frequencies are all L-Band. S-Band transmission was also verified through test antenna placed away from 13m antenna by measuring real LRIT and HRIT spectrum in S-Band. From those test results, DATS is determined to be fully ready to communicate with COMS in L-Band and S-Band.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.