• Title/Summary/Keyword: sensor classes

Search Result 65, Processing Time 0.031 seconds

An Evaluation of ETM+ Data Capability to Provide 'Forest-Shrub land-Range' Map (A Case Study of Neka-Zalemroud Region-Mazandaran-Iran)

  • Latifi Hooman;Olade Djafar;Saroee Saeed;jalilvand Hamid
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.403-406
    • /
    • 2005
  • In order to evaluate the Capability of ETM+ remotely- sensed data to provide 'Forest-shrub land-Rangeland' cover type map in areas near the timberline of northern forests of Iran, the data were analyzed in a portion of nearly 790 ha located in Neka-Zalemroud region. First, ortho-rectification process was used to correct the geometric errors of the image, yielding 0/68 and 0/69 pixels of RMS. error in X and Y axis, respectively. The original and panchromatic bands were fused using PANSHARP Statistical module. The ground truth map was made using 1 ha field plots in a systematic-random sampling grid, and vegetative form of trees, shrubs and rangelands was recorded as a criteria to name the plots. A set of channels including original bands, NDVI and IR/R indices and first components of PCI from visible and infrared bands, was used for classification procedure. Pair-wise divergence through CHNSEL command was used, In order to evaluate the separability of classes and selection of optimal channels. Classification was performed using ML classifier, on both original and fused data sets. Showing the best results of $67\%$ of overall accuracy, and 0/43 of Kappa coefficient in original data set. Due to the results represented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of three form- based classes over the study area.

  • PDF

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Classification of Aroma Using Neural Network (신경회로망을 이용한 아로마 분류)

  • Kim, Yong Soo;Kim, Han-Soo;Kim, Sun-Tae;Lim, Mi-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.431-435
    • /
    • 2013
  • Aroma has been used for healing for a long time. The healing effects depend on aroma used. We made gas sensor array system to classify aromas systematically. We used outputs of sensors as the input to IAFC neural network. Results show that the neural network successfully classified jasmine, orange, roman chamomile, and lavender into 4 classes, and classified without any error.

The Structure of 3-Tirer Context-awareness Processing Server/client based Intelligent Agents (지능형 에이전트 기반의 3-Tirer 컨텍스트 인식 처리 서버/클라이언트 구조)

  • Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.479-485
    • /
    • 2005
  • Recently, computing technology requires intelligent system structures for context-awareness in ubiquitous computing environment. An intelligent system for context-awareness is based on agents, and need sensor information to recognize users and frames to support service. Therefore, this paper proposes the structure of 3-tier context-awareness processing server/client that can connect dynamically with each sensor and service, and support various context stably The structure of a proposal system is composed of a client class that recognizes uses' context information, a server class that processes realized context information by an application processing agent, and a management server that manages these two classes. Also, in this structure users information is composed of dynamic profile to support exquisite service.

Motion Activity Detection using Wireless 3-Axis Accelerometer Sensor for Elder and Feeble Person (노약자 보호를 위한 무선 3축 가속도 센서를 이용한 움직임 검출 시스템)

  • Choi, Jeong-Yeon;Jung, Sung-Boo;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.565-568
    • /
    • 2009
  • This paper proposes an monitoring system of elder and feeble person's motion activity using an object's motion activity data. The proposed system used wireless 3-axis sensor module, product by Freescale(Wireless Sensing Triple Axis Reference Design Board (ZSTAR)). We distribute sensing data into three classes using Neural Network System SVM. We find performance of proposed system that simulate some case about walk, past walk, fallen. Classify result data and graph of sensing data present succes rate 80%.

  • PDF

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF

A Study on Improvement of the O-Ring Measurement System for the Constitutional Diagnosis (체질 진단을 위한 O-링 경근력 계측시스템의 개선에 관한 연구)

  • Kim, Y.Y.;Kim, J.M.;Yang, K.M.;Ko, S.B.;Jeong, D.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.90-94
    • /
    • 1995
  • In this paper, we improved the O-Ring Measurement System(O-R MS) based on oriental constitutional theory of four classes for objectify constitutional diagnosis by O-Ring test method which is one of effective methods in several constitutional diagnosis. The result of using in a half of year, some problems are pointed out. To settle these problems, we improved the actuator, display module, sensor module, and hardware of controller. Also, the software is supplemented to using the more decision parameters. It is estimated to have a high practical use for the objectified constitutional diagnosis.

  • PDF