• Title/Summary/Keyword: sensitivity-based model updating

Search Result 54, Processing Time 0.024 seconds

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

Mode-decoupling controller for feedback model updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

Mode-decoupling Controller for Feedback Model Updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

Multi-Phase Model Update for System Identification of PSC Girders under Various Prestress Forces

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.579-592
    • /
    • 2010
  • This paper presents a multi-phase model update approach for system identification of prestressed concrete (PSC) girders under various prestress forces. First, a multi-phase model update approach designed on the basis of eigenvalue sensitivity concept is newly proposed. Next, the proposed multi-phase approach is evaluated from controlled experiments on a lab-scale PSC girder for which forced vibration tests are performed for a series of prestress forces. On the PSC girder, a few natural frequencies and mode shapes are experimentally measured for the various prestress forces. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model which is established for the target PSC girder. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model update procedure. Based on model update results, the relationship between prestress forces and model-updating parameters is analyzed to evaluate the influence of prestress forces on structural subsystems.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.

A Study on the Improvement of Finite Element Model for Scaled Frame by Considering Eigenvectors and Eigenvalues (고유벡터와 고유치를 고려한 모형 프레임의 유한요소 모델 개선에 관한 연구)

  • 김병곤;정태진;이종길;허덕재
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1009-1016
    • /
    • 2000
  • This paper describes the procedure of increasing the efficiency of experimental modal analysis and updating the quality of FE model using the scaled commercial vehicle frame. In this study, it was found that the experimental modal analysis could be more efficient when the measurements were made on the areas with high kinetic energies. Such areas could be located with the aid of FE modal analysis. Also, the number of measurement points could be decided by considering the dynamic characteristics of full FE model. The correlation of FE model and experimental modal analysis was assessed by the differences between the natural frequencies and MAC matrix, which is based on normal modes. These differences of modal parameters were reduced through the sensitivity and optimization analysis of which objective function consisted of the errors of natural frequencies and the diagonal terms of MAC matrix.

  • PDF

Model Updating Method Based on Mode Decoupling Controller with Incomplete Modal Data (불완전 모달 정보를 이용한 모드 분리 제어기 기반의 모델 개선법)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.963-966
    • /
    • 2005
  • Model updating method is known to the area to correct finite element models by the results of the experimental modal analysis. Most common methods in model updating depend on a parametric model of the structure. In this case, the number of parameters is normally smaller than that of modal data obtained from an experiment. In order to overcome this limitation, many researchers are trying to get modal data as many as possible to date. 1 want to name this method multiple modified-system generation method. These Methods consist of direct system modification method and feedback controller method. The direct system modification Is to add a mass or stiffness on the original structure or perturb the boundary conditions. The feedback controller method is to make the closed food system with sensor and actuator so as to get the closed loop modal data. In this paper, we need to focus on the feedback controller method because of its simplicity. Several methods related the feedback controller methods are virtual passive controller (VPC) sensitivity enhancement controller (SEC) and mode decoupling controller (MDC). Among them, we will apply MDC to the model updating problem. MDC has various advantages compared with other controllers, such as VPC and SEC. To begin with, only the target mode can be changed without changing modal property of non-target modes. In addition, it is possible to fix any modes if the number of sensors is equal to that of the system modes. Finally, the required control power to achieve desired change of target mode is always lower than those of other methods such as VPC. However, MDC can make the closed loop system unstable when using incomplete modal data. So we need to take action to avoid undesirable instability from incomplete modal data. In this paper, we address the method to design the unique and robust MDD obtained from incomplete modal data. The associated simulation will be Incorporated to demonstrate the usefulness of this method.

  • PDF