• Title/Summary/Keyword: sensitivity to damage

Search Result 487, Processing Time 0.032 seconds

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck;Akle, Barbar
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.211-223
    • /
    • 2010
  • Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease (드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로)

  • Ryu, Jae-Hyun;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1231-1244
    • /
    • 2022
  • The frequency of exposure of field crops to stress situations is increasing due to abnormal weather conditions. In South Korea, large-scale diseases in representative paddy rice cultivation area were happened. There are limits to field investigation on the crop damage due to large-scale. Satellite-based remote sensing techniques are useful for monitoring crops in cities and counties, but the sensitivity of vegetation index measured from satellite under abnormal growth of crop should be evaluated. The goal is to evaluate satellite-based normalized difference vegetation index (NDVI) retrieved from different spatial scales using drone imagery. In this study, Sentinel-2 and Landsat-8 satellites were used and they have spatial resolution of 10 and 30 m. Drone-based NDVI, which was resampled to the scale of satellite data, had correlation of 0.867-0.940 with Sentinel-2 NDVI and of 0.813-0.934 with Landsat-8 NDVI. When the effects of bias were minimized, Sentinel-2 NDVI had a normalized root mean square error of 0.2 to 2.8% less than that of the drone NDVI compared to Landsat-8 NDVI. In addition, Sentinel-2 NDVI had the constant error values regardless of diseases damage. On the other hand, Landsat-8 NDVI had different error values depending on degree of diseases. Considering the large error at the boundary of agricultural field, high spatial resolution data is more effective in monitoring crops.

An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging (노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가)

  • Kim, Kyungnam;Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • Pavement distress and traffic accidents are caused by pot-hole. In addition, direct and indirect damages of road users are increasing, such as loss of life due to personal injury and damage to vehicles. Generally, the asphalt concrete pavements are continuously aging from the production process to the terminal performance period. Aging causes stripping due to cracks and moisture penetration and weakening the pavement structure to induce pot-hole. In this study, adhesion performance and moisture sensitivity were evaluated according to aging degree in order to investigate the effect of aging on asphalt pavement. As a result of the study, the viscosity of the asphalt binder was increased with aging and the bond strength of the aged was increased 2~3 times than that of the unaged. The results of accelerated aging test showed an increases in indirect tensile strength and the increase in the TSR (Tensile Strength Ratio) by 4.2~8.9 %. As a result, it is noted that the anti-stripping and adhesion performances of the aged asphalt concrete are improved compared to the unaged one under the aging conditions of asphalt binder coated on aggregates.

Prognostic Value of Serum S100 Protein by Elecsys S100 Immunoassay in Patients with Spontaneous Subarachnoid and Intracerebral Hemorrhages

  • Yoon, Seok-Mann;Choi, Young-Jin;Kim, Hwi-Jun;Shim, Jai-Joon;Bae, Hack-Gun;Yun, Il-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.308-313
    • /
    • 2008
  • Objective: The serum S100 protein has been known to reflect the severity of neuronal damage. The purpose of this study was to assess the prognostic value of the serum S100 protein by Elecsys S100 immunoassay in patients with subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH) and to establish reference value for this new method. Methods: Serum S100 protein value was measured at admission, day 3 and 7 after bleeding in 42 consecutive patients (SAH : 20, ICH : 22) and 74 healthy controls, prospectively. Admission Glasgow coma scale (GCS) score, Hunt & Hess grade and Fisher grade for SAH, presence of intraventricular hemorrhage, ICH volume, and outcome at discharge were evaluated. Degrees of serum S100 elevation and their effect on outcomes were compared between two groups. Results: Median S100 levels in SAH and ICH groups were elevated at admission (0.092 versus $0.283{\mu}g/L$) and at day 3 (0.110 versus $0.099{\mu}g/L$) compared to healthy controls ($0.05{\mu}g/L;$ p<0001). At day 7, however, these levels were normalized in both groups. Time course of S100 level in SAH patient was relatively steady at least during the first 3 days, whereas in ICH patient it showed abrupt S100 surge on admission and then decreased rapidly during the next 7 days, suggesting severe brain damage at the time of bleeding. In ICH patient, S100 level on admission correlated well with GCS score (r=-0.859; p=0.0001) and ICH volume (r=0.663; p=0.001). A baseline S100 level more than $0.199{\mu}g/L$ predicted poor outcome with 92% sensitivity and 90% specificity. Logistic regression analyses showed Ln (S100) on admission as the only independent predictor of poor outcome (odd ratio 36.1; 95% CI, 1.98 to 656.3) Conclusion: Brain damage in ICH patient seems to develop immediately after bleeding, whereas in SAH patients it seems to be sustained for few days. Degree of brain damage is more severe in ICH compared to SAH group based on the S100 level. S100 level is considered an independent predictor of poor outcome in patient with spontaneous ICH, but not in SAH. Further study with large population is required to confirm this result.

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Biological Applications of Helium Ion Microscopy

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • The helium ion microscope (HIM) has recently emerged as a novel tool for imaging and analysis. Based on a bright ion source and small probe, the HIM offers advantages over the conventional field emission scanning electron microscope. The key features of the HIM include (1) high resolution (ca. 0.25 nm), (2) great surface sensitivity, (3) great contrast, (4) large depth-of-field, (5) efficient charge control, (6) reduced specimen damage, and (7) nanomachining capability. Due to the charge neutralization by flood electron beam, there is no need for conductive metal coating for the observation of insulating biological specimens by HIM. There is growing evidence that the HIM has substantial potential for high-resolution imaging of uncoated insulating biological specimens at the nanoscale.

Optimum Progressive-Stress Accelerated Life Test (증가하는 스트레스에서의 최적가속수명시험)

  • Yun, Won-Young;Jung, Sung-Gi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.15-21
    • /
    • 1993
  • This paper considers the optimal design of accelerated life test in which the stress is linearly increased. It discusses the special case when the life distribution under constant stress follows an exponential distribution and the accelerated equation satisfies the inverse power law. It is assumed that cumulative damage is linear, that is, the remaining life of test units depends only on the current cumulative fraction failed and current stress(cumulative exposure model). The optimization criterion is the asymptotic variance of the maximum likelihood estimator of the log mean life at a design stress. The optimal increasing rate is obtained to minimize the asymptotic variance. Table of sensitivity analysis is given for the prior estimators of model parameters.

  • PDF

A study on Fault Calculation and Coordination of Relays in Distribution System (배전계통의 고장계산 및 보호계전기 협조에 관한 연구)

  • Kim, Jun-Yoen;Nam, Hae-Kon;Kim, Tae-Seoung
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.16-18
    • /
    • 1993
  • Recently, the scale of distribution system is being enlarged by increasing power demand. When system fault occurs, fault currents and damage power facilities increase, so system stability decreases. Effective prevention of system from fault extention becomes influential as a subject in distribution system operation. In this study, exact settings of relays are obtained from program for fault calculation and coordination of relays in distribution system. In order to make smooth coordination between relays even when power system conditions vary, operation time and sensitivity of relays are optimized. As a result, reliability of distribution system is increased with rapid and exact operation of relays when fault occurs.

  • PDF