• Title/Summary/Keyword: sensing system design

Search Result 697, Processing Time 1.504 seconds

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

Leader Robot Controller Considering Follower with Input Constraint (입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기)

  • Lee, Seung-Joo;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

Development of Software Education Products Based on Physical Computing (피지컬 컴퓨팅 기반 소프트웨어 교육용 제품 개발)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.595-600
    • /
    • 2019
  • Educational tools for infants and younger students are becoming smarter as ICT-based digital technology convergence extends according to the development of technology. As the digital interaction function of smart education tools gives students greater immersion and fun, a learning might become a play to the students. The technologies used in the implementation of smart education tools come from the disciplines of robotics, computer engineering, programming, and engineering and mathematical foundations and these can be integrated into the field of education itself. This paper designs and implements a product based on optimized physical computing for R&D and education in consideration of the characteristics of educational tool robots used in the field education. It was developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robot system.

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Identifying Puddles based on Intensity Measurement using LiDAR

  • Minyoung Lee;Ji-Chul Kim;Moo Hyun Cha;Hanmin Lee;Sooyong Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.267-274
    • /
    • 2023
  • LiDAR, one of the most important sensing methods used in mobile robots and cars with assistive/autonomous driving functions, is used to locate surrounding obstacles or to build maps. For real-time path generation, the detection of potholes or puddles on the driving surface is crucial. To achieve this, we used the coordinates of the reflection points provided by LiDAR as well as the intensity information to classify water areas, which was achieved by applying a linear regression method to the intensity distribution. The rationale for using the LiDAR index as an input variable for linear regression is presented, and we demonstrated that it is not affected by errors in the distance measurement value. Because of LiDAR vertical scanning, if the reflective surface is not uniform, it is divided into different groups according to the intensity distribution, and a mathematical basis for this is presented. Through experiments in an outdoor driving area, we could distinguish between flat ground, potholes, and puddles, and kinematic analysis was performed to calculate the maximum width that could be crossed for a given vehicle body size and wheel radius.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

MSC(Multi-Spectral Camera) 열제어 시스템 소개

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Jang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • As a unique payload of Komsat-2, MSC, comprising EOS(Electro-Optical Sub-system), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Sub-system), is supposed to take pictures of one panchromatic and 4 multi-spectral image between wavelength 450mm~900mm, and is being under final Satellite I&T. It will perform the earth remote sensing with applications such as acquisition of high resolution images, surveillance of large scale disasters and its countermeasure, survey of natural resources, etc.. Under the hostile influence of the extreme space environmental conditions due to deep space and direct solar flux, the thermal design is especially of major importance in designing a payload. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy source on the spacecraft. This paper describes details of thermal control system for MSC.

  • PDF

Design and Implementation of Smart Gardening System Using Real-Time Visualization Algorithm Based on IoT (IoT 기반 실시간 시각화 알고리즘을 이용한 스마트가드닝 시스템 설계 및 구현)

  • Son, Soo-A;Park, Seok-Cheon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Data generated from sensors are exploding with recent development of IoT. This paradigm shift requires various industry fields that demand instant actions to analyze the arising data on a real-time basis, along with the real-time visualization analysis. As the existing visualization systems, however, perform visualization after storing data, the response time of the server cannot guarantee the ms-level processing that is close to real-time. They also have a problem of destroying data that can be major resources as they do not possess the process resources. Therefore, a smart gardening system that applies a real-time visualization algorithm using IoT sensing data under a gardening environment was designed and implement in this study. The response time of the server was measured to evaluate the performance of the suggested system. As a result, the response speed of the suggested real-time visualization algorithm was guaranteeing the ms-level processing close to real-time.

Study for Chronic Diseases Patients Management System using Zigbee of based WPAN (WPAN 기반의 Zigbee를 이용한 만성질환 환자 관리 시스템에 관한 연구)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2011
  • As an aged population has increased in Korea, the number of patients with chronic disease has soared up as well. The rapid increase of the chronic disease triggers a need of new paradigm of healthcare. In terms of data transmission of healthcare system, a use of data-transmission protocol based on bluetooth could be dismal in application of healthcare due to its postponement of connection. On the contrary, WPAN is evaluated to be proper to support the application of healthcare in restricted geographic areas. In addition, the bluetooth, a base of the current wireless network, doesn't support a special mechanism to cope up with emergent patients because of its delayed connection among devices. Against this backdrop, this study aims to design an integrated interface of multi bio-sensing and suggest a measuring and monitering system for the patients with chronic illnesses by using Zigbee of WPAN as a sufficient bandwidth is anticipated owing to frequent deliveries of complicated biological signals.

Design of Node Position Estimation System for Sensor Networks (센서 네트워크의 노드 위치 추정 시스템 설계)

  • Rhim, Chul-Woo;Kim, Young-Rag;Kang, Byung-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1436-1449
    • /
    • 2009
  • The value of sensing information is decided according to positions of sensor nodes, which are very important in sensor networks. In this paper, we propose a method that estimates positions of nodes by using adjacent node information and received signal strength in a sensor network. With the proposed method, we can find positions of nodes easily because we use information that nodes have. Moreover, we can find distribution easily for all the nodes because we can measure a relative position for a node whose position is not known based on anchor nodes whose positions are already known. We utilized Use case diagram, activity diagram and State machine diagram among several diagrams of UML to implement proposed method in sensor networks that is dynamic system. We can understand exact flow for each function of the proposed method in node position estimation system can be implemented easily. And we can be confirmed that the position of estimated nodes has a little error.

  • PDF