• Title/Summary/Keyword: sensing system design

Search Result 697, Processing Time 0.029 seconds

Design and Implementation of IoT based Urination Management System (사물인터넷 기반의 배뇨관리 시스템 설계 및 구현)

  • Lee, Hak-Jai;Lee, Kyung-Hoon;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.209-218
    • /
    • 2017
  • Healthcare services can be provided through a number of independent service platforms for measurement of vital signs, diagnosis and prevention of diseases, and Information and communication technology(ICT) such as internet and mobile are converged to provide health information to users at anytime and anywhere, and it is in the center of the IoT(Internet of things). Accordingly, in this paper, we designed IoT based urination management system and evaluate the performance. A low - power Zigbee network was constructed for the configuration of the urination management system. The implemented capacitive diaper sensor was operable for the duration of 2,000 hours. We also built a database server using Raspberry Pi, a tiny embedded device, and stored the collected data to verify the data through an Android-based mobile application. The proposed urination management system can be utilized not only for the older patients, but also for the infants.

Design and Fabrication of CMOS Micro Humidity Sensor System (CMOS 마이크로 습도센서 시스템의 설계 및 제작)

  • Lee, Ji-Gong;Lee, Sang-Hoon;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Integrated humidity sensor system with two stages operational amplifier has been designed and fabricated by $0.8{\mu}m$ analog mixed CMOS technology. The system (28 pin and $2mm{\times}4mm$) consisted of Wheatstone-bridge type humidity sensor, resistive type humidity sensor, temperature sensors and operational amplifier for signal amplification and process in one chip. The poly-nitride etch stop process has been tried to form the sensing area as well as trench in a standard CMOS process. This modified technique did not affect the CMOS devices in their essential characteristics and gave an allowance to fabricate the system on same chip by standard process. The operational amplifier showed the stable operation so that unity gain bandwidth was more than 5.46 MHz and slew rate was more than 10 V/uS, respectively. The drain current of n-channel humidity sensitive field effect transistor (HUSFET) increased from 0.54 mA to 0.68 mA as the relative humidity increased from 10 to 70 %RH.

  • PDF

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

A Design and Implementation of Industrial Fluid Monitoring System (산업공정상의 유체 유동 모니터링 시스템 설계 및 구현)

  • Lee, Won-Joo;Lee, Sang-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • In this paper, we propose an industrial fluid monitoring system which performs the flow control function and monitors fluid pressure transmitted from MFC(Mass Flow Controller) unit. This system consists of MFC unit, channel device, and monitoring management software. MFC unit transmits the measured data of the fluid pressure to the channel device which would provide the input/output interface between management software, monitoring and MFC unit. The monitoring and management software control and analyze by monitoring real time measurements of fluid pressure from each channel of MFC unit. This software can process 20 channels and 0.1 monitoring cycle which gives 200 data measurement per second (i.e., 720,000 data/hour). At this time, the storage space increases in proportion to the rise of input data. This growth of data and storage space makes loss of data access efficiency. Therefore, it demands the implementation by sensing scheme of change scope and data, which can effectively manage the data.

Design and Implementation of System for Sensing Data Collection in RFID/USN (RFID/USN 기반의 센싱 데이터 수집을 위한 시스템 설계 및 구현)

  • Kim, Kyeong-Og;Ban, Kyeong-Jin;Heo, Su-Yeon;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.221-226
    • /
    • 2010
  • Ubiquitous computing is technology that provides services appropriate for the user. At places where environmental and situational context are relevant in making the determination of what services are appropriate, there are sensor nodes installed, which automatically collect, manage and control environmental information. In this computing environment, in order to meet the requirements of services provided to users, a context awareness system is needed for context awareness processing. In this thesis, using RFID/USN sensors, the context of a user entering and leaving an area was produced, and the user's identification information was received via the RFID reader and antenna. At the same time, to decide whether or not to allow access for the user, a distance sensor node was installed to collect context data. Based on this, a system that provides practical services needed in real life for users was designed and implemented. The context of a user entering an area was produced, which the system recognized and provided appropriate services for the user.

Design of a Multi-Protocol Gateway System Based on Low Power Wireless Communications (저전력 무선통신 기반 다중 프로토콜 게이트웨이 시스템 설계)

  • Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2006-2013
    • /
    • 2015
  • In this paper we propose a multi-protocol gateway system based on low power wireless communications. The proposed multi-protocol gateway system was designed to allow real-time monitoring and control of the on-site situation through wired and wireless networks by gathering information for streetlight power control and environmental monitoring. The sensing data using multi-sensors with composite processing that selectively used wired or wireless communication (e.g., CDMA, Ethernet (TCP/IP), GPS, etc.) were designed to act as intermediaries that transmitted to the main server through ZigBee. Inaddition, they were designed by separating a CPU board and baseboard to ensure low maintenance cost and ease of hardware replacement. The proposed multi-protocol gateway system's power, impact, continuous operation stability, and immunity test results obtained a normal operation success rate of over 95% and normal continuous operation results. Moreover, in the voltage drop test, instantaneous immunity test, and conductive RF electromagnetic field immunity test, it obtained an average rating result of "A".

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Design and Implementation of Beacon based Wireless Sensor Network for Realtime Safety Monitoring in Subway Stations (지하철 역사에서 실시간 안전 모니터링 위한 비컨 기반의 무선 센서 네트워크 설계 및 구현)

  • Kim, Young-Duk;Kang, Won-Seok;An, Jin-Ung;Lee, Dong-Ha;Yu, Jae-Hwang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.364-370
    • /
    • 2008
  • In this paper, we proposed new sensor network architecture with autonomous robots based on beacon mode and implemented real time monitoring system in real test-bed environment. The proposed scheme offers beacon based real-time scheduling for reliable association process with parent nodes and dynamically assigns network address by using NAA (Next Address Assignment) mechanism. For the large scale multi-sensor processing, our real-time monitoring system accomplished the intelligent database processing, which can generate not only the alert messages to the civilians but also process various sensing data such as fire, air, temperature and etc. Moreover, we also developed mobile robot which can support network mobility. Though the performance evaluation by using real test-bed system, we illustrate that our proposed system demonstrates promising performance for emergence monitoring systems.

Improvement of Unexpected Pitch Down Tendency of an Aircraft (항공기 기수 숙임 현상 개선)

  • Kim, Chong-Sup;Kwon, Hui-Man;Koh, Gi-Ok;Han, Kwang-Ho;Lee, Seung-Deok;Hwang, Byung-Moon;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The flight control system utilize RSS(Relaxed Static Stability) criteria in both longitudinal axes to achieve performance enhancements and improve stability. The aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as pitch, roll and yaw rate, normal acceleration from RSA(Rate Sensor Assembly) and ASA(Acceleration Sensor Assembly). These sensors has permissible measurement error related to system safety of an aircraft but, unexpected flight motions are happened by sensing errors such as offset, noise and etc. The unexpected pitch down tendency occurred by ASA sensor bias in 1g level flight with pilot hands-off. This paper addresses the design and verification of flight control law to improve of pitch down or up tendency caused by ASA sensor bias. The result of analysis and flight test reveals that pitch down tendency can be improved by pitch attitude feedback system.

Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks

  • Shen, Shihui;Ma, Yushu;Ren, Yuhong;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2016
  • Synthetic oscillators are gene circuits in which the protein expression will change over time. The delay of transcription, translation, and protein folding is used to form this kind of behavior. Here, we tried to design a synthetic oscillator by a negative feedback combined with a positive feedback. With the mutant promoter PLacC repressed by LacIq and PLux activated by AHL-bound LuxR, two gene circuits, Os-LAA and Os-ASV, were constructed and introduced into LacI-deleted E. coli DH5α cells. When glucose was used as the carbon source, a low level of fluorescence was detected in the culture, and the bacteria with Os-ASV showed no oscillation, whereas a small portion of those carrying Os-LAA demonstrated oscillation behavior with a period of about 68.3 ± 20 min. When glycerol was used as the carbon source, bacteria with Os-ASV demonstrated high fluorescence value and oscillation behavior with the period of about 121 ± 21 min.