• 제목/요약/키워드: semigroup ideal

검색결과 93건 처리시간 0.018초

On Generalised Quasi-ideals in Ordered Ternary Semigroups

  • Abbasi, Mohammad Yahya;Khan, Sabahat Ali;Basar, Abul
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.545-558
    • /
    • 2017
  • In this paper, we introduce generalised quasi-ideals in ordered ternary semigroups. Also, we define ordered m-right ideals, ordered (p, q)-lateral ideals and ordered n-left ideals in ordered ternary semigroups and studied the relation between them. Some intersection properties of ordered (m,(p, q), n)-quasi ideals are examined. We also characterize these notions in terms of minimal ordered (m,(p, q), n)-quasi-ideals in ordered ternary semigroups. Moreover, m-right simple, (p, q)-lateral simple, n-left simple, and (m,(p, q), n)-quasi simple ordered ternary semigroups are defined and some properties of them are studied.

FUZZY INTERIOR $\Gamma$-IDEALS IN ORDERED $\Gamma$-SEMIGROUPS

  • Khan, Asghar;Mahmood, Tariq;Ali, M. Irfan
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1217-1225
    • /
    • 2010
  • In this paper we define fuzzy interior $\Gamma$-ideals in ordered $\Gamma$-semigroups. We prove that in regular(resp. intra-regular) ordered $\Gamma$-semigroups the concepts of fuzzy interior $\Gamma$-ideals and fuzzy $\Gamma$-ideals coincide. We prove that an ordered $\Gamma$-semigroup is fuzzy simple if and only if every fuzzy interior $\Gamma$-ideal is a constant function. We characterize intra-regular ordered $\Gamma$-semigroups in terms of interior (resp. fuzzy interior) $\Gamma$-ideals.

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.