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FUZZY INTERIOR Γ-IDEALS IN ORDERED Γ-SEMIGROUPS

ASGHAR KHAN∗, TARIQ MAHMMOD AND M. IRFAN ALI

Abstract. In this paper we define fuzzy interior Γ-ideals in ordered Γ-
semigroups. We prove that in regular(resp. intra-regular) ordered Γ-
semigroups the concepts of fuzzy interior Γ-ideals and fuzzy Γ-ideals coin-
cide. We prove that an ordered Γ-semigroup is fuzzy simple if and only if
every fuzzy interior Γ-ideal is a constant function. We characterize intra-
regular ordered Γ-semigroups in terms of interior (resp. fuzzy interior)
Γ-ideals.
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1. Introduction

The notion of a fuzzy set in a set or (a fuzzy subset of a set) was introduced by
Zadeh in [10], and since then this concept has been applied to various algebraic
structures. Kuroki consider the fuzzification of interior ideals of semigroups in
[5] and gave several properties of semigroups in terms of fuzzy interior ideals.
Kehayopulu and Tsingelis first considered the fuzzy sets in ordered groupoids
and ordered semigroups [3]. They discussed fuzzy analogous for several notions
that have been proved to be useful in the theory of ordered groupoids/ordered
semigroups. In [4], they have shown that the concepts of a fuzzy ideal and a
fuzzy interior ideal coincide in case of regular and intra-regular ordered semi-
groups. They also shown that an ordered semigroup is simple if and only if it
is fuzzy simple. Shabir and Khan extended the concept of interior ideals of or-
dered semigroups in intuitionistic fuzzy interior ideals and characterized several
classes of ordered semigroups in terms of intuitionistic fuzzy interior ideals in
[9]. Sen and Saha [7] defined the concept of a Γ-semigroup, and established a
relation between regular Γ-semigroup and Γ-group (see also [7,8]). Kwon and
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Lee introduced the concept of Γ-ideals and weakly prime Γ-ideals in ordered Γ-
semigroups in [6], and established basic properties of ordered Γ-semigroups in
terms of weakly prime Γ-ideals.

In this paper we consider the fuzzification of the notion of interior Γ-ideals
in ordered Γ-semigroups. We prove that in regular and intra-regular ordered
Γ-semigroups the concepts of fuzzy Γ-ideals and fuzzy interior Γ-ideals coincide.
Finally, we introduce the concept of a fuzzy simple ordered Γ-semigroup and
prove that an ordered Γ-semigroup is simple if and only if it is fuzzy simple, and
we characterize ordered Γ-semigroups in terms of interior Γ-ideals and in terms
of fuzzy interior Γ-ideals.

2. Preliminaries

We conclude here some basic definitions of ordered Γ− semigroups that are
necessary for the subsequent results and for more details on ordered Γ− semi-
groups we refer to [6] .

By an ordered Γ−semigroup we mean an ordered set M at the same time a
Γ− semigroup satisfying the following condition [6]:

a ≤ b =⇒ xαa ≤ xαb and aβx ≤ bβx for all x, a, b ∈ S and α, β ∈ Γ

If M is an ordered Γ−semigroup, and A a subset of M , we denote by (A] the
subset of M defined as follows;

(A] := {t ∈ M | t ≤ a for some a ∈ A}.
If A = {a}, then we write (a] instead of ({a}]. If A,B ⊆ M,then A ⊆ (A], B ⊆

(B], (A]Γ(B] ⊆ (AΓB] and ((A]] = (A].
For A,B ⊆ M, we denote,

AΓB := {aαb | a ∈ A,α ∈ Γ and b ∈ B}.
An ordered Γ−semigroup M is called regular if for each a ∈ M and for each

α, β ∈ Γ there exists x ∈ M such that a ≤ aαxβa.
Equivalent Definitions: (1) A ⊆ (AΓMΓA] for each A ⊆ M. (2) a ∈ (aΓMΓa]

for each a ∈ M.
An ordered Γ−semigroup M is called intra-regular if for each a ∈ M and

for each α, β, γ ∈ Γ there exists x, y ∈ M such that a ≤ xαaβaγy. Equivalent
Definitions: (1) A ⊆ (MΓAΓAΓM ] for each A ⊆ M. (2) a ∈ (MΓaΓaΓM ] for
each a ∈ M.

Definition 1. A non-empty subset A of an ordered Γ−semigroup M is called a
left (resp. right) Γ−ideal of M if it satisfies [6] :

(1) MΓA ⊆ A (resp. AΓM ⊆ A),
(2) a ≤ b M 3 b ≤ a implies b ∈ A for all a, b ∈ M.

Condition (2) is equivalent to the condition (A] = A.
Both a left Γ−ideal and a right Γ−ideal of an ordered Γ−semigroup M is

called a Γ−ideal of S.
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Definition 2. A non-empty subset A of an ordered Γ-semigroup M is called an
interior Γ−ideal of M if it satisfies:

(1) MΓAΓM ⊆ A;
(2) a ≤ bM 3 b ≤ a implies b ∈ A for all a, b ∈ M.

Let M be an ordered Γ-semigroup. By a fuzzy subset f of M, we mean a
mapping

f : M −→ [0, 1].

Definition 3. A fuzzy subset f of an ordered Γ-semigroup M is called a fuzzy
left (resp. right) Γ−ideal of M, if the following conditions are satisfied:

(1) f(xαy) ≥ f(y) (resp. f(xαy) ≥ f(x)) for all x, y ∈ M and for all α ∈ Γ;
(2) If x ≤ y, then f(x) ≥ f(y) for all x, y ∈ M.

If f is both a fuzzy left Γ−ideal and right Γ−ideal then f is called a two-sided
fuzzy Γ−ideal or simply fuzzy Γ−ideal of M.

3. Fuzzy interior Γ−ideals

Definition 4. A fuzzy subset f of an ordered Γ-semigroup M is called a fuzzy
interior Γ−ideal of M, if the following conditions are satisfied:

(1) f(xαaβy) ≥ f(a) for all x, a, y ∈ M and for all α, β ∈ Γ;
(2) If x ≤ y, then f(x) ≥ f(y) for all x, y ∈ M.

In this section, we prove that in regular (resp. intra-regular) ordered Γ-
semigroups the concepts of fuzzy Γ−ideals and fuzzy interior Γ−ideals coincide.

Let M be an ordered Γ-semigroup and A ⊆ M, the characteristic function
χA of A is defined by

χA : M −→ [0, 1] | x −→ χA(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

Proposition 1. If {fi : i ∈ I} is a family of fuzzy interior Γ−ideals of an ordered
Γ-semigroup M then

⋂
i∈Λ

fi, if it is non-empty, is a fuzzy interior Γ−ideal of M,

where

( ⋂
i∈Λ

fi

)
(x) =

∧
i∈Λ

fi(x) for all x ∈ M.

Proof. For x, y ∈ M if x ≤ y, then we have(⋂

i∈Λ

fi

)
(x) =

(∧

i∈Λ

fi

)
(x) =

∧

i∈Λ

(fi(x))

≥
∧

i∈Λ

(fi(y)) (since x ≤ y =⇒ fi(x) ≥ fi(y))

=

(∧

i∈Λ

fi

)
(y) =

(⋂

i∈Λ

fi

)
(y).
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Let a, x, y ∈ M and α, β ∈ Γ. Then
(⋂

i∈Λ

fi

)
(xαaβy) =

(∧

i∈Λ

fi

)
(xαaβy) =

∧

i∈Λ

(fi(xαaβy))

≥
∧

i∈Λ

(fi(a)) (since fi(xαaβy) ≥ fi(a))

=

(∧

i∈Λ

fi

)
(a) =

(⋂

i∈Λ

fi

)
(a).

Thus
⋂
i∈Λ

fi is a fuzzy interior Γ−ideal of M. ¤

Proposition 2. Every fuzzy Γ−ideal of an ordered Γ-semigroup M is a fuzzy
interior Γ−ideal of M.

Proof. Let f be a fuzzy Γ−ideal of an ordered Γ-semigroup M. Let x, a, y ∈ M
and α, β ∈ Γ. Then

f(xα(aβy)) ≥ f(aβy) ≥ f(a) (because f is a fuzzy left and right Γ− ideal of M).

Thus f is a fuzzy interior Γ−ideal of M. ¤

The converse of the above Proposition is not true in general, however, if M
is regular then we have the following:

Proposition 3. Every fuzzy interior Γ−ideal of an ordered Γ-semigroup M is
a fuzzy Γ−ideal of M.

Proof. Let f be a fuzzy interior Γ−ideal of an ordered Γ-semigroup M. Let
a, b ∈ M and α ∈ Γ. Then

f(aαb) ≥ f(a).

Indeed: Since M is regular, there exists x ∈ M and β, γ ∈ Γ such that
a ≤ aβxγa. Then

aαb ≤ (aβxγa)αb = (aβx)γaαb.

Since f is a fuzzy interior Γ−ideal of an ordered Γ-semigroup M we have

f(aαb) ≥ f((aβx)γaαb) ≥ f(a).

Similarly, we can show that f(aαb) ≥ f(b). Thus f is a fuzzy Γ−ideal of M. ¤

Combining Propositions 6 and 7, we have the following:

Proposition 4. In regular ordered Γ-semigroups the concepts of fuzzy Γ−ideals
and fuzzy interior Γ−ideals coincide.

Proposition 5. Let M be an intra-regular ordered Γ-semigroup. Then every
fuzzt interior Γ−ideal of M is a fuzzy Γ−ideal of M.
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Proof. Let f be a fuzzy interior Γ−ideal of an intra-regular ordered Γ-semigroup
M. Let a, b ∈ M and α ∈ Γ. Then

f(aαb) ≥ f(a).

Indeed: Since M is intra-regular, there exists x, a, y ∈ M and β, γ, δ ∈ Γ such
that a ≤ xβaγaδy. Then

aαb ≤ (xβaγaδy)αb = (xβa)γaδ(yαb).

Since f is a fuzzy interior Γ−ideal of an ordered Γ-semigroup M we have

f(aαb) ≥ f((xβa)γaδ(yαb)) ≥ f(a).

Similarly, we can show that f(aαb) ≥ f(b). Thus f is a fuzzy Γ−ideal of M. ¤

Combining Propositions 6 and 9, we have the following:

Proposition 6. In intra-regular ordered Γ-semigroups the concepts of fuzzy
Γ−ideals and fuzzy interior Γ−ideals coincide.

Theorem 1. Let M be an ordered Γ-semigroup, ∅ 6= I ⊆ M. Then I is an
interior Γ−ideal of M if and only if the characteristic function χI of I is a fuzzy
interior Γ−ideal of M.

Proof. =⇒ . Suppose that I is an interior Γ−ideal ofM and χI the characteristic
function of I. Let a, b ∈ M , a ≤ b then χI(a) ≥ χI(b). Indeed: If b /∈ I then
χI(b) = 0. Since χI(a) ≥ 0, we have χI(a) ≥ χI(b). Let b ∈ I then χI(b) = 1.
Since I is an interior Γ−ideal of M and a ≤ b we have a ∈ I. Then χI(a) = 1.
Again we have χI(a) ≥ χI(b).

Let x, a, y ∈ M and α, β ∈ Γ. If a ∈ I then χI(a) = 1. Since I is an interior
Γ−ideal of M, we have xαaβy ∈ MΓIΓM ⊆ I. Then we have χI(xαaβy) = 1
and hence χI(xαaβy) ≥ χI(a).

⇐= . Assume that χI is a fuzzy interior Γ−ideal of M. Let a, b ∈ M , a ≤ b.
If b ∈ I then χI(b) = 1. Since χI(a) ≥ χI(b), we have χI(a) = 1 and so a ∈ I.

Let x, a, y ∈ M and α, β ∈ Γ. If a ∈ I, then χI(a) = 1. Since χI(xαaβy) ≥
χI(a), we have χI(xαaβy) = 1 and so xαaβy ∈ I =⇒ MΓIΓM ⊆ I. ¤

4 Fuzzy Simple Ordered Γ−Semigroups

In this section we introduce the concept of fuzzy simple ordered Γ−semigroups,
we prove that an ordered Γ-semigroup is simple if and only if it is simple, and
we characterize this type of ordered Γ−semigroups in terms of fuzzy interior
Γ−ideals.

An ordered Γ−semigroup M is called simple if it does not contain proper
Γ−ideals, that is, for any Γ−ideal A of M, we have A = M.

Definition 5. An ordered Γ-semigroup M is called fuzzy simple if every fuzzy
Γ−ideal of M is a constant function, that is, for every fuzzy Γ−ideal f of M,
we have f(a) = f(b) for all a, b ∈ M.
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If M is an ordered Γ-semigroup and a ∈ M, we denote by Ia the subset of M
defines as follows:

Ia := {b ∈ M : f(b) ≥ f(a)}.
Proposition 7. Let M be an ordered Γ-semigroup and f a fuzzy right Γ−ideal
of M. Then Ia is a right Γ−ideal of M for every a ∈ M.

Proof. Let M be an ordered Γ-semigroup and f a fuzzy right Γ−ideal of M.
Since a ∈ Ia for every x ∈ M, we have Ia 6= ∅. Let b ∈ Ia, x ∈ M and α ∈ Γ.
We have to prove that bαx ∈ Ia. Since f is a fuzzy right Γ−ideal of M, we have
f(bαx) ≥ f(b). Since b ∈ Ia we have f(b) ≥ f(a). Thus f(bαx) ≥ f(a), hence
bαx ∈ Ia =⇒ IaΓM ⊆ Ia.

Let b ∈ Ia and M 3 x ≤ b. Then x ∈ Ia. Indeed: Since f a fuzzy right Γ−ideal
of M and x ≤ b we have f(x) ≥ f(b). Since b ∈ Ia we have f(b) ≥ f(a). Thus
f(x) ≥ f(a), which implies that x ∈ Ia. ¤

In a similar way we can prove that:

Proposition 8. Let M be an ordered Γ-semigroup and f a fuzzy left Γ−ideal of
M. Then Ia is a left Γ−ideal of M for every a ∈ M.

Combining Propositions 13 and 14, we have the following:

Proposition 9. Let M be an ordered Γ-semigroup and f a fuzzy Γ−ideal of M.
Then Ia is a Γ−ideal of M for every a ∈ M.

Lemma 1. Let M be an ordered Γ-semigroup, ∅ 6= A ⊆ M. Then A is an
ordered Γ−ideal of M if and only if the characteristic function χA of A is a
fuzzy Γ−ideal of M.

Proof. =⇒ . Suppose that A is an ordered Γ−ideal of M and χA the character-
istic function of A. Let a, b ∈ M such that a ≤ b then χA(a) ≥ χA(b). I ndeed:
If b /∈ A, then χA(b) = 0. Since χA(a) ≥ 0, we have χA(a) ≥ χA(b). Let b ∈ A
then χA(b) = 1. Since A is an ordered Γ−ideal of M and a ≤ b we have a ∈ A.
Thus χA(a) = 1. Again we have χA(a) ≥ χA(b).

Let x, y ∈ M. If x ∈ A then χA(x) = 1.Since A is a right Γ−ideal of M, we
have xαy ∈ AΓM ⊆ A. Then we have χA(xαy) = 1, hence χA(xαy) ≥ χA(x).

⇐= . Assume that χA is a fuzzy Γ−ideal of M. Let a, b ∈ M such that a ≤ b.
If b ∈ A, then χA(b) = 1. Since χA(a) ≥ χA(b), we have χA(a) = 1 and so a ∈ A.

Let x, y ∈ M and α ∈ Γ. If x ∈ A, then χA(x) = 1. Since χA is a fuzzy
right Γ−ideal of M, we have χA(xαy) ≥ χA(x). Thus χA(xαy) = 1 and so
xαy ∈ A ⇒ AΓM ⊆ A. ¤
Theorem 2. An ordered Γ-semigroup M is simple if and only if it is fuzzy
simple.

Proof. Let M be a simple ordered Γ-semigroup, f a fuzzy Γ−ideal of M and
a, b ∈ M. Since f is a fuzzy Γ−ideal of M and a ∈ M, so by Proposition 15, Ia
is a Γ−ideal of M. Since M is simple we have Ia = M, and we have b ∈ Ia. Thus
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f(b) ≥ f(a). By a similar way we can prove that f(a) ≥ f(b). Thus f(b) = f(a)
and so M is fuzzy simple.

⇐= . Suppose that M contains proper Γ−ideals and let A be a Γ−ideal of M
such that A 6= M. Since A is proper Γ−ideal of M so by Lemma 16, χA is a fuzzy
Γ−ideal of M. Let x ∈ M. Since χA is a constant fuzzy Γ−ideal of M. We have
f(x) = f(b) for every b ∈ M. Since A 6= ∅, let a ∈ A. Then f(x) = f(a) = 1,
hence x ∈ A. Thus M ⊂ A, a contradiction. Thus M = A and M is simple. ¤

Lemma 2. An ordered Γ-semigroup M is simple if and only if for every a ∈ M,
we have M = (MΓaΓM ].

Proof. Let a ∈ M. Then M = (MΓaΓM ]. Infact: Since a ∈ M and M is simple,
we have a ∈ (aΓM ]. Then

a ∈ (aΓM ] ⊆ ((MΓa]ΓM ] ⊂ (MΓaΓM ],

and we have M ⊂ (MΓaΓM ]. Hence M = (MΓaΓM ].
Conversely, suppose that M contains proper Γ−ideals of M and let A be a

Γ−ideal of M such that A 6= M. Let a ∈ A. Then b ≤ bαaβb for every b ∈ M
and every α, β ∈ Γ and we have bαaβb ∈ MΓAΓM ⊆ (MΓAΓM ] ⊆ (A] = A.
Then M ⊂ A, a contradiction. Hence A = M. ¤

Theorem 3. An ordered Γ-semigroup M is simple if and only if every fuzzy
interior Γ−ideal of M is a constant function.

Proof. =⇒ . Let f be a fuzzy interior Γ−ideal of a simple ordered Γ-semigroup
M and a, b ∈ M. Since M is simple and b ∈ M, by Lemma 18, we have M =
(MΓbΓM ]. Since a ∈ M, we have a ∈ (MΓbΓM ]. Then there exist x, y ∈ M and
α, β ∈ Γ such that a ≤ xαbβy. Since f is a fuzzy interior Γ−ideal of M,we have
f(a) ≥ f(xαbβy) ≥ f(b). In a similar way we can prove that f(a) ≤ f(b), hence
f(a) = f(b) and thus f is a constant function.

⇐= . Let f be a fuzzy Γ−ideal of M. By Proposition 6, f is a fuzzy interior
Γ−ideal of M. By hypothesis, f is a constant function. Then M is fuzzy simple
and, by Theorem 17, M is simple. ¤

Proposition 10. Let M be an intra-regular ordered Γ-semigroup. Then for
every interior Γ−ideals A and B of M we have,

(AΓA] = A and (AΓB] = (BΓA].

Proof. (1) Let M be an intra-regular ordered Γ-semigroup and A,B be interior
Γ−ideals of M. Let a ∈ A. Since M is intra-regular, there exist x, y ∈ M and
α, β, γ ∈ Γ such that

a ≤ xαaβaγy ≤ xα(xαaβaγy)β(xαaβaγy)γy

= ((xαx)αaβ(aγy)β(xαa)βaγ(yγy) ∈ (MΓAΓM)Γ(MΓAΓM) ⊆ AΓA

=⇒ a ∈ (AΓA] =⇒ A ⊆ (AΓA].
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For the revesre inclusion, let a ∈ (AΓA], then a ≤ a1αa2 for some a1, a2 ∈ A
and α ∈ Γ. Then

a ≤ xαaβaγy = a ≤ (xαa)β(aγy) ≤ xα(a1αa2)β(a1αa2)γy

= (xαa1αa2)βa1α(a2γy) ∈ MΓAΓM ⊆ A

=⇒ a ∈ (A] = A =⇒ (AΓA] ⊆ A.

Thus (AΓA] = A.
(2). Let A,B be interior Γ−ideals of M.Then (AΓB] = (BΓA].

Indeed: By (1), we have

(AΓB] = ((AΓB]Γ(AΓB]] = ((AΓB]Γ(AΓB]Γ(AΓB]Γ(AΓB]]

⊆ (((AΓB)Γ(AΓB)]Γ((AΓB)Γ(AΓB)]]

⊆ (((MΓBΓM ]Γ((MΓAΓM)]]

⊆ ((B]Γ(A]]

= (BΓA] =⇒ (AΓB] ⊆ (BΓA].

By symmetry we have (BΓA] ⊆ (AΓB]. Thus (AΓB] = (BΓA]. ¤
Proposition 11. Let M be an intra-regular ordered Γ-semigroup and f a fuzzy
interior Γ−ideal of M.Then for every a ∈ M and α ∈ Γ such that aαa ≤ a, we
have

f(a) = f(aαa) and f(aαb) = f(bαa).

Proof. (1). Let M be an intra-regular ordered Γ-semigroup, f a fuzzy interior
Γ−ideal of M and a ∈ M, α ∈ Γ. Then f(a) = f(aαa). Indeed: Since M is intra-
regular and a ∈ M, there exist x, y ∈ M and α, β, γ ∈ Γ such that a ≤ xαaβaγy.
Then

f(a) ≥ f(xαaβaγy) ≥ f(aβa).

Since aαa ≤ a we have f(aαa) ≥ f(a). Hence f(a) = f(aαa).
(2). Let a, b ∈ M and α ∈ Γ. Then f(aαb) = f(bαa). Indeed: By (1), we have

f(aαb) = f((aαb)α(aαb)) = f(aα(bαa)αb) ≥ f(bαa).

By symmetry, we have f(bαa) ≥ f(aαb). Hence f(aαb) = f(bαa). ¤
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