• 제목/요약/키워드: semigroup crossed product

검색결과 5건 처리시간 0.018초

REDUCED CROSSED PRODUCTS BY SEMIGROUPS OF AUTOMORPHISMS

  • Jang, Sun-Young
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.97-107
    • /
    • 1999
  • Given a C-dynamical system (A, G, $\alpha$) with a locally compact group G, two kinds of C-algebras are made from it, called the full C-crossed product and the reduced C-crossed product. In this paper, we extend the theory of the classical C-crossed product to the C-dynamical system (A, G, $\alpha$) with a left-cancellative semigroup M with unit. We construct a new C-algebra A $\alpha$rM, the reduced crossed product of A by the semigroup M under the action $\alpha$ and investigate some properties of A $\alpha$rM.

  • PDF

THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

  • ADJI, SRIWULAN;ZAHMATKESH, SAEID
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.869-889
    • /
    • 2015
  • Let ${\Gamma}^+$ be the positive cone in a totally ordered abelian group ${\Gamma}$, and ${\alpha}$ an action of ${\Gamma}^+$ by extendible endomorphisms of a $C^*$-algebra A. Suppose I is an extendible ${\alpha}$-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I{\times}^{piso}_{\alpha}{\Gamma}^+$ embeds naturally as an ideal of $A{\times}^{piso}_{\alpha}{\Gamma}^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal $\mathcal{I}$ together with the kernel of a natural homomorphism $\phi:A{\times}^{piso}_{\alpha}{\Gamma}^+{\rightarrow}A{\times}^{iso}_{\alpha}{\Gamma}^+$ gives a composition series of ideals of $A{\times}^{piso}_{\alpha}{\Gamma}^+$ studied by Lindiarni and Raeburn.

GENERALIZED TOEPLITZ ALGEBRAS OF SEMIGROUPS

  • Jang, Sun-Young
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2005
  • We analyze the structure of $C^*-algebras$ generated by left regular isometric representations of semigroups.

  • PDF