• Title/Summary/Keyword: semiconductor photocatalysis

Search Result 12, Processing Time 0.019 seconds

Visible Light Responsive Titanium Dioxide (TiO2) (가시광 감응 산화티탄(TiO2))

  • Shon, Hokyong;Phuntsho, Sherub;Okour, Yousef;Cho, Dong-Lyun;Kim, Kyoung Seok;Li, Hui-Jie;Na, Sukhyun;Kim, Jong Beom;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Titanium dioxide ($TiO_2$) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability. But one of the critical limitations of $TiO_2$ as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of $TiO_2$ to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation. Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the $TiO_2$ photocatalytic technology and its accomplishment towards visible light region.

Diminution of Pesticide Residues on Crops and Soil by Accelerated Photolysis (광분해(光分解) 촉진(促進)에 의한 작물(作物) 및 토양중(土壤中) 농약잔유물(農藥殘留物)의 경감(輕減)에 관한 연구(硏究))

  • Lee, Jae-Koo;Jung, In-Sang;Kwon, Jeong-Wook;Ahn, Ki-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.107-116
    • /
    • 1998
  • In an effort to reduce artifically the residual pesticides on crop and soil by accelerated photolysis,some 40 among the naturally occurring and synthetic coumpound were screened for photosensitization and/or photocatalysis and six promising chemicals were selected.The fungicides and the four selected photosensitizers and/or photocatalyst (PS) were applied to each crop.The results obtained are summarized as follows. 1. The wavelengths of maximum absortion (${\lambda}$max) and the molar absorptivites (${\varepsilon}$max) of procymidone,vinclozolin,and carbendazim in acentone were all 209 nm and 853,854,and 8740 respectively. 2. Of the 40 naturally-occuring and synthetic compounds screened,six promising ones were selected and designated as PS-1 (aromatic ketone),PS-2(aromatic amine)PS-3(quinone) ,PS-4 (inorganic compound),PS-5(organic acid salt) and PS-6(semiconductor photocatalyst). 3. In the accelerated photolysis of pesticide in soil by applying PS ,procymidone was decoposed rapidly by virtue of PS-2,being 59% of the control 3 days after application. 4. The vinclozolin residue in soil was reduced to 71% and 21% of the control 1 and 15 days,respectively,after PS-2 application. 5. The photolysis of carbendazim in soil was not accelerated by any of the PS tested. 6. The pesticide residues on the crop were prominently reduced by PS application.The procymidone residue on tomato was reduced to 47% of the control 15 days after PS-1 application and that on red pepper reduced to 57% 15 days after PS-2 application. 7. Vincrozolin residus remaining on tomato 1 and 15 days after PS-2 application were 38% and 56% of the control whereas those on the red pepper were 82% and 64%,respectively. 8. PS-2 was the most effective for the accelerated photolysis of carbendazim residues remaining on tomato, whereas on red pepper, the four of PS tested were all effective, but did not make much difference between them. This might be due to the shielding of sunlight by the leaves of red pepper not to exert the photosensitizing effect of PS-2 to the full.

  • PDF