• Title/Summary/Keyword: semiconductor nanoparticles

Search Result 113, Processing Time 0.025 seconds

Fabrication of Solution Processed Thin Film Transistor Using Zinc Oxide Nanoparticles

  • Lee, Sul;Jeong, Sun-Ho;Kim, Dong-Jo;Park, Bong-Kyun;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.703-706
    • /
    • 2006
  • Zinc oxide nanocrystals are attractive candidates for a solution-processable semiconductor for high performance thin film field effect transistors. We have studied ZnO thin film transistor fabricated by solution process and have improved $V_{th}$ by controlling the ZnO ink additives. Synthesized ZnO nanoparticles of 30nm were dispersed in solvent to make the ZnO ink. ZnO ink was spin coated on silicon wafer and after heat treatment electrodes were patterned.

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Nanoparticle generation and growth in low temperature plasma process (저온 플라즈마 공정에서의 나노 미립자 생성 및 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

Electrical Properties of Nano Floating Gate Memory for Using Au and$ Au/SiO_2$ Nanoparticles (Au 및 $Au/SiO_2$ 나노입자를 이용한 나노부유게이트메모리 단일소자의 전기적 특성)

  • Park, Byoung-Jun;Kim, Hyun-Suk;Cho, Kyung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.107-108
    • /
    • 2005
  • Au and $Au/SiO_2$ nanoparticles(NPs) were synthesized by the colloidal method. The formation of Au and $Au/SiO_2$ NPs was confirmed using high resolution transmission electron microscopy (HRTEM). Synthesized solutions were deposited on Si wafer. The electrical properties of structures were measured using a semiconductor analyzer and a LCR meter. Capacitance versus voltage hysterisis curves showed the charge storage effect by Au and $Au/SiO_2$ NPs.

  • PDF

Phase-and Size-Controlled Synthesis of CdSe/ZnS Nanoparticles Using Ionic Liquid (이온성 액체에 의한 CdSe/ZnS 나노입자의 상과 크기제어 합성)

  • Song, Yun-Mi;Jang, Dong-Myung;Park, Kee-Young;Park, Jeung-Hee;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Ionic liquids are room-temperature molten salts, composed of organic mostly of organic ions that may undergo almost unlimited structural variation. We approach the new aspects of ionic liquids in applications where the semiconductor nanoparticles used as sensitizers of solar cells. We studied the effects of ionic liquids as capping ligand and/or solvent, on the morphology and phase of the CdSe/ZnS nanoparticles. Colloidal CdSe/ZnS nanoparticles were synthesized using a series of imidazolium ionic liquids; 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([RMIM][TFSI]), where R = ethyl ([EMIM]), butyl ([BMIM]), hexyl ([HMIM]), octyl ([OMIM]). The average size of nanoparticles was 8~9 nm, and both zinc-blende and wurtzite phase was produced. We also synthesized the nanoparticles using a mixture of trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([$P_{6,6,6,14}$][TFSI]) and octadecene (ODE). The CdSe/ZnS nanoparticles have a smaller size (5.5 nm) than that synthesized using imidazolium, and with a controlled phase from zinc-blende to wurtzite by increasing the volume ratio of [$P_{6,6,6,14}$][TFSI]. For the first time, the phase and size control of the CdSe/ZnS nanoparticles was successfully demonstrated using those ionic liquids.

Recent Advances in Eco-friendly Nano-ink Technology for Display and Semiconductor Application (디스플레이 반도체 기술 적용을 위한 청정 나노잉크 제조 기술)

  • Kim, Jong-Woong;Hong, Sung-Jei;Kim, Young-Seok;Kim, Young-Sung;Lee, Jeong-No;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • Printing technologies have been indicated as alternative methods for patterning conductive, semi-conductive or insulative materials on account of their low-cost, large-area patternability and pattern flexibility. For application of the printing technologies in manufacture of semiconductor or display modules, ink or paste composed of nanoparticles, solvent and additives are basically needed. Here, we report recent advances in eco-friendly nano-ink technology for semiconductor and display technology. Then, we will introduce an eco-friendly ink formation technology developed in our group with an example of manufacturing $SiO_2$ nanopowders and inks. We tried to manufacture ultrafine $SiO_2$ nanoparticles by applying a low-temperature synthetic method, and then attempted to fabricate the printed $SiO_2$ film onto the glass substrate to see whether the $SiO_2$ nanoparticles are feasible for the printing or not. Finally, the electrical characteristics of the films were measured to investigate the effect of the manufacturing parameters.

Synthesis of Hard Coating Solution for Plastic Display Plate (플라스틱 디스플레이 기판용UV 하드 코팅 용액의 합성)

  • Back, Sung Kyun;Jang, Sun Ho;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Poly(urethane acrylate) siloxane oligomers with Interpenetrating polymer netwoked nanoparticles were prepared to synthesize hard coating solution by reaction with diisocyanates. The diisocyanate combined siloxane hard coating solution showed more flexibility than the siloxane solution. In addition, diisocyanate resulted in improvement of curl property and surface hardness in the siloxane solution. Of the used diisocyanates, isophorone diisocyanate and acryloyloxy ethyl diisocyanate were good for UV hard coating solution. This effect will decrease brittleness in the siloxane solution using for plastic display plate.

  • PDF

Computational Flow Analysis of a Large Scale Mixer for Nanopowder Dispersion in Coating Liquid (나노분말이 분산된 기능성 코팅액 제조를 위한 대용량 교반기의 유동해석)

  • Kim, Dongjoo;Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In many technical fields including electronics and display manufacturing processes, properties of coating liquids could be greatly enhanced by adding nanopowders and it requires efficient mixing techniques to achieve uniform dispersion of nanoparticles in liquids. This paper presents the three-dimensional CFD simulations on the flowfields of a highly viscous liquid in the large scale industrial mixer of impeller type. The effects of several important design and operation parameters such as impeller geometry, rotational speed, and degree of liquid viscosity are investigated to appreciate the mixing performance by examining the computational results for flow pattern of rotationally stirred liquid of high viscosity in the mixer.

Multiwalled Carbon Nanotubes by the decomposition of acetylene using Co Catalysts

  • Singh, Binod-Kumar;Ryu, Ho-Jin;Park, Soo-Jin;Kim, Seok;Lee, Jae-Rock
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.40-44
    • /
    • 2005
  • Catalytic performance of Co catalysts supported on MgO for the formation of multiwall carbon nanotubes (MWCNTs) Having 40-60 nm in diameter has been investigated through acetylene decomposition at $600^{\circ}C$. Scanning electron microscopy measurements show that the nanotubes are chain and coiled structures whereas x-ray diffraction patterns indicate the formation of MWCNTs with Co nanoparticles. In addition Raman spectra confirms the format ion of MWCNTs due to presence of characteristic radial breathing mode along with D and G bands.

  • PDF

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF