• Title/Summary/Keyword: semiconductor gas

Search Result 719, Processing Time 0.026 seconds

Structural and Electrical Characteristics of IZO Thin Films deposited at Different Substrate Temperature and Oxygen Flow Rate (증착 온도 및 산소 유량에 따른 IZO 박막의 구조적 및 전기적 특성)

  • Han, Seong-Ho;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.25-30
    • /
    • 2012
  • In this study, we have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IZO thin films for the organic light emitting diodes (OLED) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $O_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $O_2$ flow rate. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under $Ar+O_2$. The change of electrical resistivity with increasing flow rate of $O_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The change of electrical resistivity with increasing substrate temperature was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed the average transmittance over 83% in the visible range.

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Development of Plasma Assisted ALD equipment and electrical characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan-Woo;kim Kyoung-Min;Yang Chung-Mo;Park Seong-Guen;Na Kyoung-Il;Lee Jung-Hee;Lee Jong-Hyun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.139-145
    • /
    • 2005
  • In the study, in order to deposit TaN thin film using diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristic of TaN thin films deposited PAALD method, PAALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamlno) tantalum) Precursor and $NH_3$ reaction gas is aware that TaN thin film deposited of high density and amorphous phase with XRD measurement The degree of diffusion and react ion taking place in Cu/TaN(deposited using 150 W PAALD)/$SiO_2$/Si systems with increasing annealing temperature was estimated from MOS capacitor property and the $SiO_2(600\;\AA)$/Si system surface analysis by C-V measurement and secondary ion material spectrometer(SIMS) after Cu/TaN/$SiO_2(400\;\AA)$ system etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to $500^{\circ}C$.

  • PDF

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

Development of Plasma Assisted ALD equipment and Electrical Characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan Woo;Kim Kyoung Min;Yang Chung Mo;Park Seong Guen;Na Kyoung Il;Lee Jung Hee;Lee Jong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.39-43
    • /
    • 2005
  • In the study, in order to deposit TaN thin film for diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristics of TaN thin films grown PAALD method. Plasma Assisted ALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamino) tantalum) precursor and NH3 reaction gas is shown that TaN thin film deposited high density and amorphous phase with XRD measurement. The degree of diffusion and reaction taking place in Cu/TaN (deposited using 150W PAALD)/$SiO_{2}$/Si systems with increasing annealing temperature was estimated for MOS capacitor property and the $SiO_{2}$, (600${\AA}$)/Si system surface analysis by C-V measurement and secondary ion material spectrometer (SIMS) after Cu/TaN/$SiO_{2}$ (400 ${\AA}$) layer etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to 500$^{\circ}C$.

  • PDF

Structural and Electrical Characteristics of IZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 IZO 박막의 구조적 및 전기적 특성)

  • Han, Seong-Ho;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.33-37
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IZO thin films for the organic light emitting diodes (OLED) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $H_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.9sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $H_2$ flow rate. The electrical resistivity of IZO film decreased with increasing flow rate of $H_2$ under Ar+$H_2$. The change of electrical resistivity with increasing flow rate of $H_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The increase of electrical resistivity with increasing substrate temperature was interpreted in terms of the decrease of the charge carrier mobility and the charge carrier concentration. All the films showed the average transmittance over 83% in the visible range.

Blistering Induced Degradation of Thermal Stability Al2O3 Passivation Layer in Crystal Si Solar Cells

  • Li, Meng;Shin, Hong-Sik;Jeong, Kwang-Seok;Oh, Sung-Kwen;Lee, Horyeong;Han, Kyumin;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • Different kinds of post-deposition annealing (PDA) by a rapid thermal process (RTP) are used to enhance the field-effect passivation of $Al_2O_3$ film in crystal Si solar cells. To characterize the effects of PDA on $Al_2O_3$ and the interface, metal-insulator semiconductor (MIS) devices were fabricated. The effects of PDA were characterized as functions of RTP temperature from $400{\sim}700^{\circ}C$ and RTP time from 30~120 s. A high temperature PDA can retard the passivation of thin $Al_2O_3$ film in c-Si solar cells. PDA by RTP at $400^{\circ}C$ results in better passivation than a PDA at $400^{\circ}C$ in forming gas ($H_2$ 4% in $N_2$) for 30 minutes. A high thermal budget causes blistering on $Al_2O_3$ film, which degrades its thermal stability and effective lifetime. It is related to the film structure, deposition temperature, thickness of the film, and annealing temperature. RTP shows the possibility of being applied to the PDA of $Al_2O_3$ film. Optimal PDA conditions should be studied for specific $Al_2O_3$ films, considering blistering.

Structural and electrical characteristics of IZO thin films deposited on flexible substrate (유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under oxygen ambient gases (Ar, $Ar+O_2$) at room temperature. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $O_2$ under $Ar+O_2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/a-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF