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Abstract—Different kinds of post-deposition 

annealing (PDA) by a rapid thermal process (RTP) 

are used to enhance the field-effect passivation of 

Al2O3 film in crystal Si solar cells. To characterize the 

effects of PDA on Al2O3 and the interface, metal-

insulator semiconductor (MIS) devices were 

fabricated. The effects of PDA were characterized as 

functions of RTP temperature from 400~700 
°
C and 

RTP time from 30~120 s. A high temperature PDA 

can retard the passivation of thin Al2O3 film in c-Si 

solar cells. PDA by RTP at 400 
°
C results in better 

passivation than a PDA at 400 
°
C in forming gas (H2 

4% in N2) for 30 minutes. A high thermal budget 

causes blistering on Al2O3 film, which degrades its 

thermal stability and effective lifetime. It is related to 

the film structure, deposition temperature, thickness 

of the film, and annealing temperature. RTP shows 

the possibility of being applied to the PDA of Al2O3 

film. Optimal PDA conditions should be studied for 

specific Al2O3 films, considering blistering.    

 

Index Terms—Solar cell, field-effect passivation, Al2O3, 

post-deposition annealing, negative fixed oxide charge, 

thermal stability, blistering   

 

I. INTRODUCTION 

Currently, the solar cell market is dominated by 

crystalline Si solar cells. Carrier losses induced by 

Schockey-Read-Hall (SRH) recombination retard the 

efficiency of energy conversion. Surface passivation of 

the carriers is an important issue for high efficiency 

crystalline Si solar cell applications. Al2O3 film grown by 

atomic layer deposition (ALD) has demonstrated 

excellent uniformity and growth control, suggesting 

better passivation quality [1]. Al2O3 synthesized by ALD 

provides a high quality surface because its low interface 

state density provides good chemical passivation and the 

negative fixed charges near the interface for p-type c-Si 

provide excellent field-effect passivation [2-6]. Al2O3 

film also can offer excellent dielectric properties [7]. 

Several studies show that both chemical and field-effect 

passivation is enhanced by post-deposition annealing in 

forming gas (H2 in N2) at a moderate temperature for 

about 15~30 minutes after the deposition of Al2O3 film 

[8-10]. 

Obviously, this high thermal budget forming gas 

annealing (FGA) is neither cost- nor energy-efficient. On 

the other hand, rapid thermal processing (RTP) is another 

widely used annealing method with such advantages as a 

short cycle time and low thermal budget. Dong Lei et al. 

studied the relationship between only the RTP 

temperature and the passivation of Al2O3 and found the 

SiOx interlayer became thicker after the RTP [5]. 

However, few works address RTP annealing to passivate 

Al2O3 in c-Si solar cell applications [5, 8]. 

In this work, we studied the relationship of the field-

effect passivation and the effective carrier lifetime as a 
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function of the RTP time and temperature. A common 

FGA at 400 °C for 30 minutes was also used for 

comparison to ascertain whether the RTP can provide 

good enough field-effect passivation for Al2O3 on c-Si 

solar cells. 

II. EXPERIMENTAL 

To examine the electrical properties of the Al2O3 film, 

metal-insulator semiconductor (MIS) devices were 

fabricated. The process flow is summarized in Fig. 1. p-

type silicon wafers were used. After a standard Radio 

Corporation of America (RCA) cleaning, a 20 nm Al2O3 

thin film was deposited by thermal ALD at 250 °C, with 

trimethylaluminium (Al(CH3)3 and water (H2O) 

precursors. Then samples were annealed in an RTP 

system with a vacuum of 1.5x10-5 Torr as a function of 

temperature at 400, 500, 600 and 700 °C for 30 seconds 

and as a function of time at 30, 60, 90, and 120 seconds 

at 400 °C. A reference sample and another sample 

annealed in a tube furnace at 400 °C for 30 minutes in 

forming gas ambient (H2 4% in N2) were also prepared 

for comparison. After a 100 nm thick layer of Ti was 

sputtered as the top metal by an RF sputter system, the 

samples were patterned by photolithography. Finally, 100 

nm thick Al was sputtered on the backside of the samples 

to reduce resistance. The capacitance-voltage (C-V) 

measurements were performed by an HP 4284A LCR 

meter. Effective carrier lifetime was measured by the 

Quasi Steady State PhotoConductance (QSSPC) method 

on samples cut in 5 × 5 cm squares. Morphological 

stability was observed by field-emission scanning 

electron microscopy (FESEM). X-ray photoelectron 

spectroscopy (XPS) and secondary ion mass 

spectroscopy (SIMS) were used to examine the change in 

the binding energy, the atomic ratio of Al to O, and the 

depth profile of elements before and after annealing, 

respectively.  

III. RESULTS AND DISCUSSIONS 

The results of C-V measurements at a frequency of 1 

MHz are shown in Fig. 2. After the PDA, the curves shift 

to the positive direction, which means that the negative 

fixed charges (-Qf) increased. The Qf are related to the 

field-effect passivation of the solar cell. The minority 

charge carriers are repelled from the interface by the Qf 

formed electric field. Thus, fewer minority charge 

carriers will be lost. The fixed charge density (Nf) was 

calculated by Nf=-∆VFB x Cox, ∆VFB is the difference 

between the experimental flatband voltage (VFB) and the 

 

p-type Si 

RCA Cleaning 

Al2O3 deposition (thermal ALD, 250°C, 20 nm)
PDA (RTP 400°C, 30~120 s

RTP 400~700°C, 30 s
FGA (4% H2 in N2) 400°C, 30 min)

Top metal deposition (RF sputter, Ti 100 nm)

Patterning (lithography)

Back metal deposition (RF sputter, Al 100 nm)

 

Fig. 1. Process flow for the MIS devices. 
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Fig. 2. The normalized C-V curves obtained at 1MHz (a) PDA 

at RTP 400 °C from 30 seconds to 120 seconds, (b) PDA by 

RTP from 400 °C to 700 °C for 30 seconds. 

 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.1, FEBRUARY, 2014 55 

 

ideal VFB of -0.53 V, which was calculated in our 

previous work by fitting the VFB vs. the thickness of the 

Al2O3. Cox is the maximum capacitance from the C-V 

curve.  

In Fig. 3, the as-deposited sample shows that the sign 

of the positive fixed charges and the fixed charges turn to 

negative fixed charges after the PDA. The negative fixed 

charges do not significantly increase with longer process 

times from 30 seconds to 120 seconds at 400 °C. The 

better interface states help improve the slopes of the C-V 

curves annealed by RTP as opposed to FGA. When the 

temperature increases from 400 to 700 °C for 30 seconds, 

the sample has nearly the same negative fixed charges as 

the sample treated by FGA in Fig. 3(b). With a relatively 

high temperature anneal, an interlayer of SiOx can be 

formed [5]. Tetrahedrally coordinated Si in SiOx 

contributes to tetrahedrally coordinated Al at the 

interface, causing the negatively charged Al vacancies 

close to the interface [4-6, 8, 11, 12].  

Effective lifetime (τeff) measured by QSSPC is shown 

in Fig. 4. In the QSSPC measurement, a conventional 

xenon photoflash generates excess carriers in the sample. 

A fast or slowly diminishing flash is used to measure the 

photoconductivity. The derived excess carrier density 

(∆n) and generation rate (G) vs. time give the τeff in Eq. 

(1).  
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The sample annealed with an RTP at 400 °C for 60 s 

has the longest τeff, and 90 s and 120 s annealed samples 

show degradation in Fig. 4(a). With the increase of 

temperature, a 500 °C RTP shows the best lifetime and 

above 500 °C, rapid degradation occurs in Fig. 4(b). 

However, even a 500 °C annealed sample shows no 

better τeff than a 60 s annealed sample at RTP 400 °C. 

At an injection level of 2 × 1014 cm-3, τeff and surface 

recombination velocity (Seff) were extracted (shown in 

Fig. 5. Seff was extracted from Eq. (2), 
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where W is the effective wafer thickness (carrier profile 

thickness) and τbulk is the bulk minority carrier lifetime 

that is assumed to be infinite [15, 16]. In Fig. 5(a), the 

increased RTP time at 400 °C, 60 s, shows the highest τeff 

and lowest Seff. In Fig. 5(b), the RTP temperature of 

500 °C shows the highest τeff and lowest Seff. However, it 

is not as good as the 60 s RTP at 400 °C. The degradation 

at high temperature may be explained by the formation of 

0 30 60 90 120

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

300 400 500 600 700As-dep.

 

As-dep.

PDA time [s]

N
f 
[1
0
1
2
 c
m

-2
]

FGA 400 
o
C 30 min

PDA temperature [
o
C]

 

Fig. 3. Fixed oxide charge density (a) annealed at a 400 °C 

RTP, (b) annealed at 400~700 °C RTP for 30 s. 

 

 

10
14

10
15

10
16

0

50

100

150

200

250

Minority carrier density [cm
-3
]

τ e
ff
 [
u
s]

 

RTP 400 
o
C

 As_dep.

 FGA

 30 s

 60 s

 90 s

 120 s

 

(a) 

 

10
14

10
15

10
16

0

50

100

150

200

250

Minority carrier density [cm
-3
]

τ e
ff
 [
u
s]

RTP 30 s

 As_dep.

 FGA

 400 
o
C

 500 
o
C

 600 
o
C

 700 
o
C

 

(b) 

Fig. 4. Effective lifetime measured by QSSPC method (a) 

annealed at the RTP 400 °C, (b) annealed by the RTP 

400~700 °C for 30 s. 
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silicate under high temperature annealing [5]. 

Nevertheless, annealing Al2O3 at a high temperature may 

be risky because it may induce blistering. D. Schuldis et 

al. reported in detail the blistering mechanism of Al2O3, 

which is related to the film structure, deposition 

temperature, thickness of the film, and the annealing 

temperature and time. It is thought that the diffusion 

barrier properties of Al2O3 and the outdiffusion of H-

containing species during annealing are the reasons for 

the happening of blister [13], which degrade τeff and 

thermal stability. Although the sample treated by FGA 

has more negative fixed charges, poor interface states are 

shown and blistering may initiate this. Fig. 6 shows the 

blisters observed by optical microscopy. A lower process 

temperature (Fig. 6(a)) causes larger but fewer blisters 

and a higher process temperature (Fig. 6(b)) results in 

smaller but more blisters.   

Fig. 7 shows an overview and side view of blisters 

observed after RTP at 600 °C (Fig. 7(a)) and 700 °C (Fig. 

7(b)). The blister looks like a hillock, which degrades the 

thermal stability in the firing process. Thus the annealing 

time should be chosen carefully. Increasing it to over 

400 °C is probably not wise for a thin Al2O3 film.  

Without considering high temperature annealing, the 

FGA at 400 °C for 30 minutes apparently has the greatest 

thermal budget; therefore, it was selected to examine by 

XPS and SIMS the trend of the changes in the Al2O3 film 

after PDA. Fig. 8 shows the curve-fitting results of the O 

1s from XPS. After FGA at 400 °C for 30 min, the Al2O3 

peak becomes higher than the peak of the adsorbed water. 

The atomic ratio of Al to O is 1:2.4 as-deposited and 

becomes 1:2.6 after the FGA. This means the surface of 

the sample becomes relatively O-rich. Moreover, the 

metallic Al atoms decrease and turn to Al2O3 or atoms of 
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Fig. 5. Effective lifetime and surface recombination velocity at 

2 × 1014 cm-3 (a) annealed at RTP 400 °C, (b) annealed at RTP 

400~700 °C for 30 s. 
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Fig. 6. Blisters observed by optical microscopy (a) PDA by 

RTP 600 °C for 30 s, (b) PDA by RTP 700 °C for 30 s. 

 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.1, FEBRUARY, 2014 57 

 

other compositions and bonding structures. Byungha 

Shin et al. reported that ALD Al2O3 films are O-rich near 

the interface and become progressively more Al-rich 

further away from the interface. Additionally, the sign of 

the fixed charge is correlated with the local stoichiometry 

of the films, such that a negative fixed charge exists 

within the O-rich regions near the interface and a positive 

fixed charge is within Al-rich regions away from the 

interface [14]. The ratio of O to Al increases after 

annealing, indicating more O-related interstitials or fewer 

Al-related vacancies, which may be responsible for the 

change in the fixed charge density.  

In Fig. 9, SIMS shows the depth profile before and 

after FGA. It can be see that H and O diffuse at the 

interface to the substrate of Si, which can explain the 

chemical passivation of the dangling bonds at the 

interface by forming –OH. The O element diffuses to the 

interface and makes a more O-rich interface, which is the 

source of field passivation by the negative fixed charges.  

IV. CONCLUSIONS 

We have found that a PDA using RTP at 400 °C can 

better passivate 20 nm thick Al2O3 than FGA at 400 °C 

for 30 minutes, indicating the potential of PDA for 

passivating Al2O3 on c-Si by RTP. A high thermal budget 

treatment, especially a high temperature treatment, must 

be used carefully with Al2O3 films because of the 

blistering. The outdiffusion of H-containing species is 

believed to be the reason for the formation of blisters. 

The blistering degrades thermal stability and effective 

lifetime. An optimal annealing time and temperature that 

avoids the formation of blisters should be studied for 

different kinds of Al2O3 in the passivation of solar cell 

applications. The diffusion of O and H elements to the 

interface are believed to improve the passivation of the 

interface. 
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Fig. 7. Morphological analysis of annealed samples by FESEM 

(a) The overlook of blister after RTP 600 °C, (b) The side view 

of blister after RTP 700 °C 
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Fig. 8. O 1s photoelectron spectra of Al2O3 films recorded by 

XPS (a) the sample of as-deposited, (b) the sample after FGA at 

400 °C, 30 minutes. 
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