• Title/Summary/Keyword: semiconductor gas

Search Result 710, Processing Time 0.028 seconds

Optimal filter design at the semiconductor gas sensor by using genetic algorithm (유전알고리즘을 이용한 반도체식 가스센서 최적 필터 설계)

  • Kong, Jung-Shik
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • This paper is about elimination the situation in which gas sensor data becomes inaccurate due to temperature control when a semiconductor gas sensor is driven. Recently, interest in semiconductor gas sensors is high because semiconductor sensors can be driven with small and low power. Although semiconductor-type gas sensors have various advantages, there is a problem that they must operate at high temperatures. First temperature control was configured to adjust the temperature value of the heater mounted on the gas sensor. At that time, in controlling the heater temperature, gas sensor data are fluctuated despite supplying same gas concentration according to the temperature controlled. To resolve this problem, gas and temperature are extracted as a data. And then, a relation function is constructed between gas and temperature data. At this time, it is included low pass filter to get the stable data. In this paper, we can find optimal gain and parameters between gas and temperature data by using genetic algorithm.

Intelligent Decision System for Purging a Residual Gas inside Tubing in Semiconductor Process (반도체공정의 Tubing 내 잔여가스제거 지적결정시스템)

  • Lee, Sa-Hwan;Huh, Yong-Jeong;Choi, Seong-Joo;Lee, Jong-Rark
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.23-27
    • /
    • 2006
  • Semiconductor industry has been dramatically developed with the information era of 21C, and the trend now is to consider that the technology of management system of the computer utility that has a high efficiency is important. This study investigated the intelligent decision system for residual gas purge process to effectively remove the residual gas in the tube after replacing the cylinder that is used for the gas cabinet or BSGS(Bulk Specialty Gas Supply System) of the semiconductor process. It was suggest from this study that it is possible to decide the type, frequency and volume of purge gas using various toxic gases which is necessary for each process. Also, this result will be utilized for operating the system, increasing the efficiency of management and saving energy.

  • PDF

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Design of a Smart Gas Sensor System for Room Air-Cleaner of Automobile (Thick-Film Metal Oxide Semiconductor Gas Sensor)

  • Kim, Jung-Yoon;Shin, Tae-Zi;Yang, Myung-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • It is almost impossible to secure the reproductibility and stability of a commercial Thick-Film Metal Oxide Semiconductor Gas Sensor since it is very difficult to keep the consistency of the manufacturing environment. Thus it is widely known that the general Semiconductor-Oxide Gas Sensors are not appropriate for precise measurement systems. In this paper, the output characteristic analyzer of the various Thick-Film Metal Oxide Semiconductor Gas Sensors that are used to recognize the air quality within an automobile are proposed and examined. The analyzed output characters in a normal air chamber are grouped by sensor ranks and used to fill out the characteristic table of the Thick-Film Metal Oxide Semiconductor Gas Sensors. The characteristic table is used to determine the rank of the sensor that is equipped in the current air cleaner system of an automobile. The proposed air control system can also adapt the on-demand operation that recognizes the history of the passenger's manual-control.

Effect of Ambient Gas on the Early Stage of the OLED Degradation

  • Kwak, Jeong-Hun;Cho, Hyun-Duck;Hong, Yong-Taek;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1467-1469
    • /
    • 2007
  • We report on the effect of ambient gas on the OLED degradation. The operating voltage and quantum efficiency increases when the device is exposed to the atmospheric gas and then returns to the initial level of the device in vacuum when the atmospheric gas is evacuated. These changes in the OLED performance can be attributed to the ambient gas pressure.

  • PDF

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

A study on the Internal Flow Analysis of Gas Cylinder Cabinet for Specialty Gas of Semiconductor (반도체용 특수가스 공급을 위한 가스캐비닛 내부 유동해석에 관한 연구)

  • Kim, Jung-Duck;Han, Seung-A;Yang, Won-Baek;Rhim, Jong-Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.74-81
    • /
    • 2020
  • In general, when manufacturing a semiconductor, a number of hazardous and dangerous substances such as flammability, toxic, and corrosiveness are used. In particular, semiconductors are manufactured using specialty gas in processes such as CVD and etching. The specialty gas is filled in a container in the state of compressed or liquefied gas, and a gas cylinder cabinet is used as a facility for supplying this specialty gas to the semiconductor manufacturing process. When a accident occurs in the gas supply system, gas is released through a pressure release device installed in the gas cylinder to secure the safety of the supply system. In this case, the gas released inside the gas cabinet, there is a risk of leaking to the outside. After that, by analyzing the gas flow in the gas cabinet, it is intended to identify the risk associated with leak and to provide measures to prevent accidents.

A Space Charge Model for Semiconductor Gas Sensors (반도체 가스감지소자를 위한 공간전하 모델)

  • 이성필;이덕동;손병기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1631-1636
    • /
    • 1989
  • A space charge model for semiconductor reduced gas sensors has been roposed and applied to gas sensing mechanism. SnO2-x and SnO2-x/Pt thin film were deposited by vacuum evaporating method. And Hall effect and gas sensitivity characteristics of these sensors were measured. From the space charge model and carrier concentration, the number of the adsorbed gas atom on the solid surface was calculated quantitatively. The gas sensing model was compared with CO gas sensitivities of the fabricated thin film gas sensors.

  • PDF

Development of Monitoring System Using Residual Gas Analyzer (RGA) and Artificial Intelligence Modeling (잔류가스 분석기(RGA)와 인공지능 모델링을 이용한 모니터링 시스템 개발)

  • Ji Soo Lee;Song Hun Kim;Gyeong Su Kim;Hyo Jong Song;Sang-Hoon Park;Deuk-Hoon Goh;Bong-Jae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.129-134
    • /
    • 2024
  • This study aims to talk about the necessity of solving the PFC gas emission problem raised by the recent development of the semiconductor industry and the remote plasma source method monitoring system used in the semiconductor industry. The 'monitoring system' means that the researchers applied machine learning to the existing monitoring technology and modeled it. In the process of this study, Residual Gas Analyzer monitoring technology and linear regression model were used. Through this model, the researchers identified emissions of at least 12700mg CO2 to 75800mg CO2 with values ranging from ion current 0.6A to 1.7A, and expect that the 'monitoring system' will contribute to the effective calculation of greenhouse gas emissions in the semiconductor industry in the future.

  • PDF

Reactivity Considerations with Miscibility of Process Gases in Semiconductor industry (반도체 산업 공정가스의 혼화성에 따른 반응성 고찰)

  • Lee, Keun Won
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.15-24
    • /
    • 2016
  • In the semiconductor industry, the risk of chemical accidents due to miscibility between the many types of chemicals and leakage of toxic chemicals has increased. In order to evaluate the reactivity with miscibility of chemicals, experimental method is the most reliable, but there is a time and cost limitations to be evaluated through experiment all the chemicals. In the study, the reactivity of process gases in the semiconductor industry was considered by the CRW (Chemical Reactivity Worksheets) 3.0 program developed by US NOAA (National Oceanic and Atmospheric Administration) and EPA. The reactivity informations with the miscibility of process gases for semiconductor industry provided, and also a KOSHA guide for the storage/separation of gas cylinders in dispensing cabinets in the semiconductor industry was proposed.