• Title/Summary/Keyword: semiconducting polymer

Search Result 54, Processing Time 0.034 seconds

Electrorheology and universal yield stress function of semiconducting polymer suspensions

  • Choi, Hyoung-J.;Cho, Min-S.;Kim, Ji-W.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • We reported on the eletrorheological (ER) properties of several semiconducting polymers including poly (p-phenylene) (PPP), poly (acene quinone) radicals (PAQRs), microencapsulated polyaniline (MPANI) and polyaniline (PANI) those we synthesized. The yield stress dependence on electric field strength for the ER fluids using these semiconducting polymers was mainly examined. The yield stress, which is an important design parameter for ER fluids, was observed to satisfy a universal scaling function, allowing that yield stress data for all the ER fluids examined in this study collapse onto a single curve for a broad range of electric field strengths. The proposed scaling function incorporates both the polarization and conductivity models.

  • PDF

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Laser Assisted Lift-Off Process as a Organic Patterning Methodology for Organic Thin-Film Transistors Fabrication

  • Kim, Sung-Jin;Ahn, Taek;Suh, Min-Chul;Mo, Yeon-Gon;Chung, Ho-Kyoon;Bae, Jin-Hyuk;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1154-1157
    • /
    • 2006
  • Organic thin-film transistors (OTFTs) based on a semiconducting polymer have been fabricated using an organic patterning methodology. Laser assisted lift-off (LALO) technique, ablating selectively the hydrophobic layer by an excimer laser, was used for producing a semiconducting polymer channel in the OTFT with high resolution. The selective wettability of a semiconducting polymer, poly (9-9-dioctylfluorene-co-bithiophene) (F8T2), dissolved in a polar solvent was found to define precisely the pattering resolution of the active channel. It is demonstrated that in the F8T2 TFTs fabricated using the LALO technique and is applicable for the larger area display.

  • PDF

The functions & Requirements of the Semi-Conducting layer in the power cable. (전력 케이블에서 반도전층의 역할과 요구 특성)

  • Jung, Yun-Tack;Nam, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.101-105
    • /
    • 2001
  • For high voltage XLPE power cables, semiconducting layers have been applied to prevent discharge at the interface between conductor and insulation, and/or insulation and external shielding layer. The semiconducting layers may be also effective to release electrical stress in the interface. The property of semiconducting layers are significantly related to the quality and reliability of power cables. Generally, these semiconducting layers are formed by extruding, the conductibility of the material is given by the carbon black mixed with base polymer. The life of power cables is depended on the smoothness of the interface between insulation and semiconducting layer. If the smoothness is no good, the life of power cables is shorter because the electrical stress and water tree is increased. The causes of no good smoothness are the void of the interface, the protrusions, the contaminants and impurities of the semiconducting layer. The selection and dispersion of the Carbon Black is the significant factor to determine the life of power cable in the manufacturing of semiconducting compound.

  • PDF

A Benzodithiophene-based Semiconducting Polymer for Organic Thin Film Transistor

  • Hong, Jung-A;Kim, Ran;Yun, Hui-Jun;Park, Joung-Man;Shin, Sung Chul;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1170-1174
    • /
    • 2013
  • Benzodithiophene based organic semiconducting polymer was designed and synthesized by stille coupling reaction. The structure of polymer was confirmed by NMR and IR. The weight average molecular weight ($M_w$) of polymer was 8,400 using GPC with polydispersity index of 1.4. The thermal, optical and electrochemical properties of polymer were characterized by TGA and DSC, UV-vis absorption and cyclic voltammetry. OTFT device using PBDT-10 exhibited the mobility of $7.2{\times}10^{-5}\;cm^2\;V^{-1}\;s^{-1}$ and $I_{on}/I_{off}$ of $2.41{\times}10^3$. The film morphology and crystallinity of PBDT-10, was studied using AFM and XRD.

Mechanical, Thermal and Electrical Properties of Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes (다중벽 카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, Jeong-Ho;Huh, Mong-Young;Yang, Hoon;Shin, Dong-Hoon;Park, Dae-Hee;Nah, Chang-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.422-427
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. Commercial semiconducting layers ire composed of polymer composites reinforced with more than 30 wt% of carbon blacks. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing and precipitation with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With the decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Nanostructuring of Semi-conducting Block Copolymers: Optimized Synthesis and Processing for Efficient Optoelectronic Devices

  • Hadziioannou, Georges
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.74-75
    • /
    • 2006
  • In organic opto-electronic applications, such as light emitting diodes (LEDs) and photovoltaic devices (PVDs), the morphology of the active layer is of crucial importance. To control the morphology of the active layer the self-assembling properties of block copolymers was used. Several rod-coil semiconducting diblock copolymers consisting of a conjugated block and a second coil block functionalized with electron transporting and/or accepting materials (such as $C_{60}$) were synthesized. The conjugated block acting as light absorbing, electron donating and hole transporting material. The donor/acceptor photovoltaic devices performance with active layer the above mentioned semiconducting block copolymers will be presented.

  • PDF