Electrorheology and universal yield stress function of semiconducting polymer suspensions

  • Choi, Hyoung-J. (Department of Polymer Science and Engineering, Inha University) ;
  • Cho, Min-S. (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Ji-W. (Department of Polymer Science and Engineering, Inha University)
  • Published : 2001.12.01

Abstract

We reported on the eletrorheological (ER) properties of several semiconducting polymers including poly (p-phenylene) (PPP), poly (acene quinone) radicals (PAQRs), microencapsulated polyaniline (MPANI) and polyaniline (PANI) those we synthesized. The yield stress dependence on electric field strength for the ER fluids using these semiconducting polymers was mainly examined. The yield stress, which is an important design parameter for ER fluids, was observed to satisfy a universal scaling function, allowing that yield stress data for all the ER fluids examined in this study collapse onto a single curve for a broad range of electric field strengths. The proposed scaling function incorporates both the polarization and conductivity models.

Keywords

References

  1. Langmuir v.6 Block,H.;J.P.Kelly;A.Qin;T.Waston
  2. Electrorheological Fluids, Mechanisms, Properties, Technology and Applications Bloodworth,R.
  3. Macromol. Rapid Commun. v.19 Cho,M.S.;H.J.Choi;K.To
  4. Polym. Adv. Tech. v.8 Choi,H.J.;M.S.Cho;M.S.Jhon
  5. Polym. Eng. Sci. v.39 Choi,H.J.;J.H.Lee;M.S.Cho;M.S.Jhon
  6. J. Mater. Sci. Lett. v.19 Choi,H.J.;Y.H.Lee;C.A.Kim;M.S.Jhon
  7. Polymer v.40 Choi,H.J.;J.W.Kim;K.To
  8. Appl. Phys. Lett. v.78 Choi,H.J.;M.S.Cho;J.W.Kim;C.A.Kim;M.S.Jhon
  9. J. Rheol. v.44 Chu,S.H;K.H.Ahn;S.J.Lee
  10. Intl. J. Mod. Phys. B v.13 Conrad,H.;C.W.Wu;X.Tang
  11. J. Appl. Phys. v.81 Davis,L.C.
  12. J. Phys. D: Appl. Phys. v.33 Duan,X.;H.Chen;Y.He;W.Luo
  13. Adv. Mater. v.4 Grem,G.;G.Leditzky;B.UIIrich;G. Leising, G.
  14. Synth. Met. v.71 Grem,G.;V.Martin;F.Meghdadi;C.Paar;J.Stampfl;J.Sturm;S.Tasch;G.Leising
  15. Synth. Met. v.58 Goldenberg,L.M.;P.C.Lacaze
  16. J. Appl. Phys. v.86 Gonon,P.;J.N.Foulc;P.Atten;C.Boissy
  17. J. Phys.Chem. B v.101 Goodwin,J.W.;G.M.Markham;B.Vinent
  18. J. Colloid Inter. Sci. v.136 Gow,C.J.;C.F.Zukoski
  19. Phys. Rev. E v.56 Gulley,G.L.;R.Tao
  20. Korea-Australia Rheol. J. v.11 Ha,J.W.;S.M.Yang
  21. Macromol. Rapid Commun. v.20 Kim,J.W.;S.G.Kim;H.J.Choi;M.S.Jhon
  22. Polymer v.41 Kim.J.W.;M.H.Noh;H.J.Choi;D.C.Lee;M.S.Jhon
  23. Int. J. Mod. Phys. B v.15 Kim,J.W.H.J.Choi;S.H.Yoon;M.S.Jhon
  24. Polymer v.42 Kim,S.G.;J.W.Kim;W.H.Jang;H.J.Choi;M.S.Jhon
  25. J. Am. Chem. Soc. v.85 Kovacic,P.;J.Oziomek
  26. Chem. Rev. v.87 Kovacic,P.;M.B.Jones
  27. J. Colloid Inter. Sci. v.206 Lee,H.J.;B.D.Chin;S.M.Yang;O.O.Park
  28. Macromol. Rapid Commun. v.22 Park,J.H.;Y.T.Lim;O.O.Park
  29. Mater. Sci. Eng v.R17 Parthasarathy,M;D.J.Klingenberg
  30. J. Phys. Chem v.66 Phol,H.A.;E.H.Engelgardt
  31. Synth. Met. v.102 Plocharski,J.;M.Rozanski;H.Wycislik
  32. Korea-Australia Rheol. J. v.11 See,H.
  33. J. Phys. D: Appl. Phys. v.33 See,H.
  34. Chem. Mater. v.13 Sim,I.S.;J.W.Kim;H.J.Choi;C.A.Kim;M.S.Jhon
  35. Acta. Polym. v.44 Schluter,A.D.;G.Wegner
  36. J. Rheol. v.39 Tang,X.;C.W.Wu;H.Conrad
  37. J. Appl. Phys. v.78 Tang,X.;C.W.Wu;H.Conrad
  38. Phys. Rev. Lett. v.73 Tao,R.;Q,Jiang
  39. Appl. Phys. Lett. v.71 Wen,W.;N.Wang;W.Y.Tam;P.Sheng
  40. J. Phys. D v.29 Wu,C.W.;H.Conrad
  41. Phys. Rev. E v.56 Wu,C.W.;H.Conrad
  42. Intl. J. Mod. Phys. B v.13 Wu,C.W.;H.Conrad