• 제목/요약/키워드: semi-prime

검색결과 69건 처리시간 0.018초

THE WEAKLY SEMI-PRIME IDEALS OF po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • 제5권2호
    • /
    • pp.135-139
    • /
    • 1997
  • We introduce the concepts of weakly prime and weakly semi-prime ideals in po-${\Gamma}$-semigroup and give some characterizations of weakly prime and weakly semi-prime ideals of po-${\Gamma}$-semigroups analogous to the characterizations of weakly prime and weakly semi-prime ideals of po-semigroups considered by N. Kehayopulu.

  • PDF

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

ON L-FUZZY SEMI-PRIME IDEALS OF A POSET AND SEPARATION THEOREMS

  • Engidaw, Derso Abeje;Alemu, Tilahun Bimerew
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.305-320
    • /
    • 2021
  • In this paper, the relations between L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset and L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of the lattice of all ideals of a poset are established. A result analogous to Separation Theorem is obtained using L-fuzzy semi-prime ideals.

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • 대한수학회논문집
    • /
    • 제19권2호
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

SEMI-PRIME CLOSURE OPERATIONS ON BCK-ALGEBRA

  • BORDBAR, HASHEM;ZAHEDI, MOHAMMAD MEHDI
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.385-402
    • /
    • 2015
  • In this paper we study the (good) semi-prime closure operations on ideals of a BCK-algebra, lower BCK-semilattice, Noetherian BCK-algebra and meet quotient ideal and then we give several theorems that make different (good) semi-prime closure operations. Moreover by given some examples we show that the given different notions are independent together, for instance there is a semi-prime closure operation, which is not a good semi-prime. Finally by given the notion of "$c_f$-Max X", we prove that every member of "$c_f$-Max X" is a prime ideal. Also we conclude some more related results.

ON INTUITIONISTIC FUZZY PRIME ${\Gamma}$-IDEALS OF ${\Gamma}$-LA-SEMIGROUPS

  • Abdullah, Saleem;Aslam, Muhammad
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.603-612
    • /
    • 2012
  • In this paper, we introduce and study the intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideals of ${\Gamma}$-LA-semigroups and some interesting properties are investigated. The main result of the paper is: if $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an IFS in ${\Gamma}$-LA-semigroup S, then $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideal of S if and only if for any $s,t{\in}[0,1]$, the sets $U({\mu}_A,s)=\{x{\in}S:{\mu}_A(x){\geq}s\}$ and $L({\gamma}_A,t)=\{x{\in}S:{\gamma}_A(x){\leq}t\}$ are prime (semi-prime) ${\Gamma}$-ideals of S.