• Title/Summary/Keyword: semi-energy

Search Result 864, Processing Time 0.024 seconds

Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation (이방성재료 접합 띠판에 대한 면외 동적계면균열)

  • Park, Jae-Wan;Choi, Sung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF

A Study on the Recovery of Carbon Energy by Thermophilic Aerobic Digestion (고온호기성 소화공정을 이용한 탄소원 회수에 관한 연구)

  • Yi, Yunseok;Kim, Ryunho;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.906-912
    • /
    • 2007
  • A lab-scale thermophilic aerobic digestion (TAD) system was operated at $64^{\circ}C$ with mixed primary and secondary sludges taken from a large wastewater treatment plant. The semi-continuously operated reactor at HRTs of 1, 3 and 6 days indicated that longer HRT could stabilize sludge organics and solids comparable to anaerobic digestion. It has been found that reduced HRT of 3 and 1 day produced the effluent with highly biodegradable soluble organics, indicating the possibility of energy recovery in TAD. No proof of biological nitrification was observed at thermophilic operating temperature of $64^{\circ}C$, while nitrogen removal seemed due to nitrogen exertion during the aerobic thermophilic cell synthesis as well as ammonia stripping.

Effect of substrates on the geometries of as-grown carbon coils

  • Park, Semi;Kim, Sung-Hoon;Kim, Saehyun;Jo, Insu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.163-164
    • /
    • 2012
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. The substrate with oxygen incorporation and the substrate without oxygen incorporation were employed to elucidate the effect of substrate on the formation of carbon coils. The characteristics (formation densities, morphologies, and geometries) of the deposited carbon coils on the substrate were investigated. In case of Si substrate, the microsized carbon coils were dominant on the substrate surface. While, in case of oxygen incorporated substrate, the nanosized carbon coils were prevail on the substrate surface. The cause for the different geometry formation of carbon coils according to the different substrates was discussed in association with the different thermal expansion coefficient values between the substrate with oxygen incorporation and the substrate without oxygen incorporation.

  • PDF

Characteristics of an HTS SMES for Solar Power System

  • Kim Woo-Seok;Lee Seung-wook;Hahn Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.44-46
    • /
    • 2005
  • A SMES can be a perfect alternative energy storage device to the chemical batteries which are needed by most of the renewable energy supply systems. The chemical battery storage system is so expensive to maintain and causes another environmental problem because they are not recyclable. But, SMES has semi-permanent lifetime and no environmental problems cause it only need coolants which is non flammable, clean and recyclable gas. In order to verify the feasibility of a SMES for the renewable electrical power supply system, electrical characteristics of a test SMES coil with the photovoltaic power system were analyzed in this paper. Simulation results show that we can charge 40 amps of current in test SMES coil using solar power system. The experimental verification will be performed just after development of the peak power tracking system for the solar system.

Trends in Betavoltaic Battery Technology (베타전지 기술동향 분석)

  • Kang, T.W.;Choi, B.G.;Park, S.M.;Park, K.H.;Lee, J.J.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.40-47
    • /
    • 2017
  • One of the main technical constraints of a conventional battery is the limited lifetime of electric energy supplied. With self-power generation using an internal radioisotope as an emitter of beta particles, and a PN-junction semiconductor as an absorber of the beta particles, a betavoltaic battery can provide electric energy to electric devices in a semi-permanent manner. Hence, a betavoltaic battery can be adopted as the solution to the power source issue of IoT devices placed in locations that people cannot easily access, such as in the deep sea, a desert, and space, and requiring a long operation time without an electrical charging. This paper covers the current trends in betavoltaic batteries including issues regarding their technology, application, and patents.

Cosmic Web traced by ELGs and LRGs from the Multidark Simulation

  • Kim, Doyle;Rossi, Graziano
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2016
  • Current and planned large-volume surveys such as the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (SDSS IV-eBOSS) or the Dark Energy Spectroscopic Instrument (DESI) will use Luminous Red Galaxies (LRGs) and Emission Line Galaxies (ELGs) to map the cosmic web up to z~1.7, and will allow one to accurately constrain cosmological models and obtain crucial information on the nature of dark energy and the expansion history of the Universe in novel epochs - particularly by measuring the Baryon Acoustic Oscillation (BAO) feature with improved accuracy. To this end, we present here a study of the spatial distribution and clustering of a sample of LRGs and ELGs obtained from a sub-volume of the MultiDark simulation complemented by different semi-analytic prescriptions, and investigate how these two different populations trace the cosmic web at different redshift intervals - along with their synergy. This is the first step towards the interpretation of upcoming ELG and LRG data.

  • PDF

Transmitting Boundary for the Seismic Response Analysis of Dam including surface sloshing and Bottom Absorption (수면파와 저면흡수가 고려된 댐 지진응답해석을 위한 전달경계)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.180-187
    • /
    • 1998
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In this paper a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into account and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium

  • Lata, Parveen
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.439-451
    • /
    • 2018
  • In the present investigation, a plane P (longitudinal) wave is made incident upon a transversely isotropic magnetothermoelastic solid slab of uniform thickness, interposed between two different semi-infinite viscoelastic solids. The transversely isotropic magnetothermoelastic sandwiched layer is homogeneous with combined effects of two temperature, rotation and Hall current in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of energy dissipation on various amplitude ratios of longitudinal wave with angle of incidence are depicted graphically. Some cases of interest are also deduced from the present investigation.

A Study on Mixed Convection in Parallel Flat Plate with Heated Rectangular Block Arrays (발열체가 있는 평행평판공간내의 대류열전달에 관한 수치해석)

  • Jung, B.Y.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 1986
  • An analysis is made of the fully developed laminar flow and heat transfer in a parallel flat plate with heated rectangular block arrays to investigated the influence of bouyancy force. The shrouds is considered as adiabatic, while the heated block surface transmit a uniform rate of heat flux per unit axial length. The governing equations for velocity and temperature are solved by SIMPLE(Semi-Implicit Method Pressure Linked Equation) algorithm. Detailed velocity and temperature fields and overall heat transfer on wide range of Rayleigh number and various aspect ratios of heated rectangular blocks are computed. The result show that bouyancy leads to a significient enhancement in heat transfer along with a smaller increase in pressure drop, with the great enhancement found when the aspect ratio is 3.0.

  • PDF