• Title/Summary/Keyword: semantic networks

Search Result 172, Processing Time 0.029 seconds

Research on Methods for Processing Nonstandard Korean Words on Social Network Services (소셜네트워크서비스에 활용할 비표준어 한글 처리 방법 연구)

  • Lee, Jong-Hwa;Le, Hoanh Su;Lee, Hyun-Kyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • Social network services (SNS) that help to build relationship network and share a particular interest or activity freely according to their interests by posting comments, photos, videos,${\ldots}$ on online communities such as blogs have adopted and developed widely as a social phenomenon. Several researches have been done to explore the pattern and valuable information in social networks data via text mining such as opinion mining and semantic analysis. For improving the efficiency of text mining, keyword-based approach have been applied but most of researchers argued the limitations of the rules of Korean orthography. This research aims to construct a database of non-standard Korean words which are difficulty in data mining such abbreviations, slangs, strange expressions, emoticons in order to improve the limitations in keyword-based text mining techniques. Based on the study of subjective opinions about specific topics on blogs, this research extracted non-standard words that were found useful in text mining process.

Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning' ('인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • Artificial intelligence, which is one of the representative images of the 4th industrial revolution, has been highly recognized since 2016. This paper analyzed domestic paper trends for 'Artificial Intelligence', 'Machine Learning', and 'Deep Learning' among the domestic papers provided by the Korea Academic Education and Information Service. There are approximately 10,000 searched papers, and word count analysis, topic modeling and semantic network is used to analyze paper's trends. As a result of analyzing the extracted papers, compared to 2015, in 2016, it increased 600% in the field of artificial intelligence, 176% in machine learning, and 316% in the field of deep learning. In machine learning, a support vector machine model has been studied, and in deep learning, convolutional neural networks using TensorFlow are widely used in deep learning. This paper can provide help in setting future research directions in the fields of 'artificial intelligence', 'machine learning', and 'deep learning'.

Road Surface Damage Detection Based on Semi-supervised Learning Using Pseudo Labels (수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지)

  • Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.71-79
    • /
    • 2019
  • By using convolutional neural networks (CNNs) based on semantic segmentation, road surface damage detection has being studied. In order to generate the CNN model, it is essential to collect the input and the corresponding labeled images. Unfortunately, such collecting pairs of the dataset requires a great deal of time and costs. In this paper, we proposed a road surface damage detection technique based on semi-supervised learning using pseudo labels to mitigate such problem. The model is updated by properly mixing labeled and unlabeled datasets, and compares the performance against existing model using only labeled dataset. As a subjective result, it was confirmed that the recall was slightly degraded, but the precision was considerably improved. In addition, the $F_1-score$ was also evaluated as a high value.

Network Analysis between Uncertainty Words based on Word2Vec and WordNet (Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.247-271
    • /
    • 2019
  • Uncertainty in scientific knowledge means an uncertain state where propositions are neither true or false at present. The existing studies have analyzed the propositions written in the academic literature, and have conducted the performance evaluation based on the rule based and machine learning based approaches by using the corpus. Although they recognized that the importance of word construction, there are insufficient attempts to expand the word by analyzing the meaning of uncertainty words. On the other hand, studies for analyzing the structure of networks by using bibliometrics and text mining techniques are widely used as methods for understanding intellectual structure and relationship in various disciplines. Therefore, in this study, semantic relations were analyzed by applying Word2Vec to existing uncertainty words. In addition, WordNet, which is an English vocabulary database and thesaurus, was applied to perform a network analysis based on hypernyms, hyponyms, and synonyms relations linked to uncertainty words. The semantic and lexical relationships of uncertainty words were structurally identified. As a result, we identified the possibility of automatically expanding uncertainty words.

Keyword networks in RJCC research - A co-word analysis and clustering - (RJCC 연구 키워드 네트워크 - 동시출현단어분석과 군집분석 -)

  • Seo, Hyun-Jin;Choi, Yeong-Hyeon;Oh, Seung-Taek;Lee, Kyu-Hye
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.3
    • /
    • pp.193-205
    • /
    • 2019
  • A trend analysis of research articles in a field of knowledge is significant because it can help in finding out the structural characteristics of the field and the future direction of research through observing change in a time series. We identified the structural characteristics and trends in text data (keywords) gathered from research articles which in itself is an important task in various research areas. The titles and keywords were crawled from research articles published from 2016 to 2018 in the Research Journal of the Costume Culture (RJCC), one of the representative Korean journal in the field of clothing and textile. After we extracted data comprising English titles and keywords from 195 published articles, we transformed it into a 1-mode matrix. We used measures from network analysis (i.e., link, strength, and degree centrality) for evaluating meaningful patterns and trends in the research on clothing and textile. NodeXL was used for visualizing the semantic network. This study observed change in the clothing and textile research trend. In addition to covering the core areas of the field, the subjects of research have been diversifying with every passing year and have evolved onto a developmental direction. The most studied area in articles published by the RJCC was fashion retailing/consumer psychology while aesthetic/historic and fashion industry/policy studies were covered to a more limited extent. We observed that most of the studies reflecting the identity of RJCC share subject keywords to a significant extent.

Analysis of Public Perception and Policy Implications of Foreign Workers through Social Big Data analysis (소셜 빅데이터분석을 통한 외국인근로자에 관한 국민 인식 분석과 정책적 함의)

  • Ha, Jae-Been;Lee, Do-Eun
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This paper aimed to look at the awareness of foreign workers in social platforms by using text mining, one of the big data techniques and draw suggestions for foreign workers. To achieve this purpose, data collection was conducted with search keyword 'Foreign Worker' from Jan. 1, to Dec. 31, 2020, and frequency analysis, TF-IDF analysis, and degree centrality analysis and 100 parent keywords were drawn for comparison. Furthermore, Ucinet6.0 and Netdraw were used to analyze semantic networks, and through CONCOR analysis, data were clustered into the following eight groups: foreigner policy issue, regional community issue, business owner's perspective issue, employment issue, working environment issue, legal issue, immigration issue, and human rights issue. Based on such analyzed results, it identified national awareness of foreign workers and main issues and provided the basic data on policy proposals for foreign workers and related researches.

VoiceXML Dialog System Based on RSS for Contents Syndication (콘텐츠 배급을 위한 RSS 기반의 VoiceXML 다이얼로그 시스템)

  • Kwon, Hyeong-Joon;Kim, Jung-Hyun;Lee, Hyon-Gu;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.1 s.111
    • /
    • pp.51-58
    • /
    • 2007
  • This paper suggests prototype of dialog system combining VXML(VoiceXML) that is the W3C's standard XML format for specifying interactive voice dialogues between human and computer, and RSS(RDF Site Summary or Really Simple Syndication) that is representative technology of semantic web for syndication and subscription of updated web-contents. Merits of the proposed system are as following: 1) It is a new method that recognize spoken contents using ire and wireless telephone networks and then provide contents to user via STT(Speech-to-Text) and TTS(Text-to-Speech) instead of traditional method using web only. 2) It can apply advantage of RSS that subscription of updated contents is converted to VXML without modifying traditional method to provide RSS service, 3) In terms of users, it can reduce restriction on time-spate in search of contents that is provided by RSS because it uses ire and wireless telephone networks, not internet environment. 4) In terms of information provider, it does not need special component for syndication of the newest contents using speech recognition and synthesis technology. We implemented a news service system using VXML and RSS for performance evaluation of the proposed system. In experiment results, we estimated the response time and the speech recognition rate in subscription and search of actuality contents, and confirmed that the proposed system can provide contents those are provided using RSS Feed.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Meaning Structure of Green Infrastructure - A Literature Review about Definitions - (그린인프라스트럭처의 의미구조 - 기존문헌의 정의문 분석을 중심으로 -)

  • Lee, Eun-Sek;Noh, Cho-Won;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.65-76
    • /
    • 2014
  • Green Infrastructure(GI) is suggested to recover urban water circulation system as a newly conceptual alternative methodology by Korean landscape field in recent years. In this context, the study considers the essential meaning of GI. The methodology of this study is literature review with 47 published papers which were peer-reviewed in international journals in the recent 5 years. These papers were collected from online database and academic archives. The main analysis targets are definition sentences about GI. The each sentences were interpreted by semantic structure between verbs and objects in the definition sentences. As the results, it figured out 5 aims('Provide', 'Improve', 'Produce', 'Conserve', 'Reduce'), 4 objects('Humanistic', 'Environmental', 'Ecological', 'Hydrological') and 3 spaces('Object space', 'Technically available spaces', 'Object or technically available spaces'). The '5 aims' connected with the elements of '4 objects' based on the '3 spaces'. The elements was connected to the '5 aims' via single form or 2~3 forms of the essential meaning networks of GI. The study provides 83 meaning networks to use landscape architecture planning and urban planning.

Semantic Network Analysis of Presidential Debates in 2007 Election in Korea (제17대 대통령 후보 합동 토론 언어네트워크 분석 - 북한 관련 이슈를 중심으로)

  • Park, Sung-Hee
    • Korean journal of communication and information
    • /
    • v.45
    • /
    • pp.220-254
    • /
    • 2009
  • Presidential TV debates serve as an important instrument for the general viewers to evaluate the candidates’ character, to examine their policy, and finally to make an important political decisions to cast ballots. Every words candidates utter in the course of entire election campaign exert influence of a certain significance by delivering their ideas and by creating clashes with their respective opponents. This study focuses on the conceptual venue, coined as ‘stasis’ by ancient rhetoricians, in which the clashes take place, and examines the words selection made by each candidates, the manners in which they form stasis, call for evidence, educate the public, and finally create a legitimate form of political argumentation. The study applied computer based content analysis using KrKwic and UCINET software to analyze semantic networks among the candidates. The results showed three major candidates, namely Lee Myung Bak, Jung Dong Young, and Lee Hoi Chang, displayed separate patterns in their use of language, by selecting the words that are often neglected by their opponents. Apparently, the absence of stasis and the lack of speaking mutual language significantly undermined the effects of debates. Central questions regarding issues of North Korea failed to meet basic requirements, and the respondents failed to engage in effective argumentation process.

  • PDF