• Title/Summary/Keyword: semantic mining

Search Result 220, Processing Time 0.033 seconds

A Technique for Extracting GeoSemantic Knowledge from Micro-blog (마이크로 블로그기반의 공간 지식 추출 기법연구)

  • Ha, Su-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Recently international organizations such as ISO/TC211, OGC, INSPIRE (Infrastructure for Spatial Information in Europe) make an effort to share geospatial data using semantic web technologies. In addition, smart phone and social networking services enable community-based opportunities for participants to share issues of a social phenomenon based on geographic area, and many researchers try to find a method of extracting issues from that. However, serviceable spatial ontologies are still insufficient at application level, and studies of spatial information extraction from SNS were focused on user's location finding or geocoding by text mining. Therefore, a study of extracting spatial phenomenon from social media information and converting it into geosemantic knowledge is very usable. In this paper, we propose a framework for extracting keywords from micro-blog, one of the social media services, finding their relationships using data mining technique, and converting it into spatiotemopral knowledge. The result of this study could be used for implementing a related system as a procedure and ontology model for constructing geoseem antic issue. And from this, it is expected to improve the effectiveness of finding, publishing and analysing spatial issues.

Method of Semantic Passage Generation and Retrieval for Encyclopedia QA system (백과사전 질의응답 시스템을 위한 의미적 단락 생성 및 검색 기법)

  • Lee, Chung-Hee;Oh, Hyo-Jung;Kim, Hyeon-Jin;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.159-166
    • /
    • 2004
  • 본 논문에서는 질의응답 시스템에서 질문의 주제와 개념적으로 일치하는 단락으로부터 정보를 추출할 경우에 보다 정확한 정답을 추출할 수 있다는 가정 하에 문장 주제를 활용한 의미적 단락 생성 및 검색 기법을 제안한다. 문장주제란 백과사전 문서 집합에서 공통으로 기술하는 내용이나 자주 언급하고 있는 사건 혹은 개념들의 집합을 의미하는 것으로, 주제별로 응집된 문장들로 재구성된 단락을 의미적 단락이라고 정의한다. 제안된 방법의 성능을 평가하기 위해 의미적 단락의 신뢰도를 파악하고, 백과사전 본문을 3문장 단위로 잘라서 고정길이 단락을 만든 후 의미적 단락의 검색결과와 비교하였다. 평가척도로는 TREC의 역순위평균(MRR : Mean Reciprocal Rank)과 상위 5개 단락 안에 정답유무를 측정하는 사용자 정답만족도를 사용하였다. ETRI 평가셋을 대상으로 한 실험 결과, 주제를 이용한 의미적 단락 검색 성능이 고정길이 단락 검색보다 우수함을 알 수 있었다.

  • PDF

Evaluating the Characteristics of Subversive Basic Fashion Utilizing Text Mining Techniques (텍스트 마이닝(text mining) 기법을 활용한 서브버시브 베이식(subversive basics) 패션의 특성)

  • Minjung Im
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.78-92
    • /
    • 2023
  • Fashion trends are actively disseminated through social media, which influences both their propagation and consumption. This study explored how users perceive subversive basic fashion in social media videos, by examining the associated concepts and characteristics. In addition, the factors contributing to the style's social media dissemination were identified and its distinctive features were analyzed. Through text mining analysis, 80 keywords were selected for semantic network and CONCOR analysis. TF-IDF and N-gram results indicate that subversive basic fashion involves transformative design techniques such as cutting or layering garments, emphasizing the body with thin fabrics, and creating bold visual effects. Topic modeling suggests that this fashion forms a subculture that resists mainstream norms, seeking individuality by creatively transforming the existing garments. CONCOR analysis categorized the style into six groups: forward-thinking unconventional fashion, bold and unique style, creative reworking, item utilization and combination, pursuit of easy and convenient fashion, and contemporary sensibility. Consumer actions, linked to social media, were shown to involve easily transforming and pursuing personalized styles. Furthermore, creating new styles through the existing clothing is seen as an economic and creative activity that fosters network formation and interaction. This study is significant as it addresses language expression limitations and subjectivity issues in fashion image analysis, revealing factors contributing to content reproduction through user-perceived design concepts and social media-conveyed fashion characteristics.

Multidimensional Analysis of Consumers' Opinions from Online Product Reviews

  • Taewook Kim;Dong Sung Kim;Donghyun Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.838-855
    • /
    • 2019
  • Online product reviews are a vital source for companies in that they contain consumers' opinions of products. The earlier methods of opinion mining, which involve drawing semantic information from text, have been mostly applied in one dimension. This is not sufficient in itself to elicit reviewers' comprehensive views on products. In this paper, we propose a novel approach in opinion mining by projecting online consumers' reviews in a multidimensional framework to improve review interpretation of products. First of all, we set up a new framework consisting of six dimensions based on a marketing management theory. To calculate the distances of review sentences and each dimension, we embed words in reviews utilizing Google's pre-trained word2vector model. We classified each sentence of the reviews into the respective dimensions of our new framework. After the classification, we measured the sentiment degrees for each sentence. The results were plotted using a radar graph in which the axes are the dimensions of the framework. We tested the strategy on Amazon product reviews of the iPhone and Galaxy smartphone series with a total of around 21,000 sentences. The results showed that the radar graphs visually reflected several issues associated with the products. The proposed method is not for specific product categories. It can be generally applied for opinion mining on reviews of any product category.

Collaboration Framework based on Social Semantic Web for Cloud Systems (클라우드 시스템에서 소셜 시멘틱 웹 기반 협력 프레임 워크)

  • Mateo, Romeo Mark A.;Yang, Hyun-Ho;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • Cloud services are used for improving business. Moreover, customer relationship management(CRM) approaches use social networking as tools to enhance services to customers. However, most cloud systems do not support the semantic structures, and because of this, vital information from social network sites is still hard to process and use for business strategy. This paper proposes a collaboration framework based on social semantic web for cloud system. The proposed framework consists of components to support social semantic web to provide an efficient collaboration system for cloud consumers and service providers. The knowledge acquisition module extracts rules from data gathered by social agents and these rules are used for collaboration and business strategy. This paper showed the implementations of processing of social network site data in the proposed semantic model and pattern extraction which was used for the virtual grouping of cloud service providers for efficient collaboration.

Biotea-2-Bioschemas, facilitating structured markup for semantically annotated scholarly publications

  • Garcia, Leyla;Giraldo, Olga;Garcia, Alexander;Rebholz-Schuhmann, Dietrich
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2019
  • The total number of scholarly publications grows day by day, making it necessary to explore and use simple yet effective ways to expose their metadata. Schema.org supports adding structured metadata to web pages via markup, making it easier for data providers but also for search engines to provide the right search results. Bioschemas is based on the standards of schema.org, providing new types, properties and guidelines for metadata, i.e., providing metadata profiles tailored to the Life Sciences domain. Here we present our proposed contribution to Bioschemas (from the project "Biotea"), which supports metadata contributions for scholarly publications via profiles and web components. Biotea comprises a semantic model to represent publications together with annotated elements recognized from the scientific text; our Biotea model has been mapped to schema.org following Bioschemas standards.

A Study on Gamification Consumer Perception Analysis Using Big Data

  • Se-won Jeon;Youn Ju Ahn;Gi-Hwan Ryu
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.332-337
    • /
    • 2023
  • The purpose of the study was to analyze consumers' perceptions of gamification. Based on the analyzed data, we would like to provide data by systematically organizing the concept, game elements, and mechanisms of gamification. Recently, gamification can be easily found around medical care, corporate marketing, and education. This study collected keywords from social media portal sites Naver, Daum, and Google from 2018 to 2023 using TEXTOM, a social media analysis tool. In this study, data were analyzed using text mining, semantic network analysis, and CONCOR analysis methods. Based on the collected data, we looked at the relevance and clusters related to gamification. The clusters were divided into a total of four clusters: 'Awareness of Gamification', 'Gamification Program', 'Future Technology of Gamification', and 'Use of Gamification'. Through social media analysis, we want to investigate and identify consumers' perceptions of gamification use, and check market and consumer perceptions to make up for the shortcomings. Through this, we intend to develop a plan to utilize gamification.

Visualization of movie recommendation system using the sentimental vocabulary distribution map

  • Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2016
  • This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.

A Study on the Semantic Network Analysis of "Cooking Academy" through the Big Data (빅데이터를 활용한 "조리학원"의 의미연결망 분석에 관한 연구)

  • Lee, Seung-Hoo;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • In this study, Big Data was used to collect the information related to 'Cooking Academy' keywords. After collecting all the data, we calculated the frequency through the text mining and selected the main words for future data analysis. Data collection was conducted from Google Web and News during the period from January 1, 2013 to December 31, 2017. The selected 64 words were analyzed by using UCINET 6.0 program, and the analysis results were visualized with NetDraw in order to present the relationship of main words. As a result, it was found that the most important goal for the students from cooking school is to work as a cook, likewise to have practical classes. In addition, we obtained the result that SNS marketing system that the social sites, such as Facebook, Twitter, and Instagram are actively utilized as a marketing strategy of the institute. Therefore, the results can be helpful in searching for the method of utilizing big data and can bring brand-new ideas for the follow-up studies. In practical terms, it will be remarkable material about the future marketing directions and various programs that are improved by the detailed curriculums through semantic network of cooking school by using big data.

A Study on Research Trend for Nurses' Workplace Bullying in Korea: Focusing on Semantic Network Analysis and Topic Modeling (간호사의 직장 내 괴롭힘에 대한 국내 연구 동향 분석: 의미연결망분석과 토픽모델링 중심)

  • Choi, Jeong Sil;Kim, Youngji
    • Korean Journal of Occupational Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Purpose: The aim of this study was to identify core keywords and topic groups of workplace bullying researches in the past 10 years for better understanding research trend. Methods: The study was conducted in four steps: 1) collecting abstracts, 2) extracting and cleaning semantic morphemes, 3) building co-occurrence matrix and 4) analyzing network features and clustering topic groups. Results: 437 articles between 2010 and 2019 were retrieved from 5 databases (RISS, NDSL, Google scholar, DBPIA and Kyobo Scholar). Forty-one abstracts from these articles were extracted, and network analysis was conducted using semantic network module. The most important core keywords were 'turnover', 'intention', 'factor', 'program' and 'nursing'. Four topic groups were identified from Korean databases. Major topics were 'turnover' and 'organization culture'. Conclusion: After reviewing previous research, it has been found that turnover intention has been emphasized. Further research focused on various intervention is needed to relieve workplace bullying in nursing field.