• Title/Summary/Keyword: self-supervised adaptive

Search Result 8, Processing Time 0.027 seconds

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Investigation of Correlation Between Cognition/Emotion Styles and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기 조직 신경망에 의한 인지/감성 유형의 시계열 직관 예측과의 상관성 조사)

  • Yoo Hyeon-Joong;Park Hung Kook;Cho Taekyung;Park Jongil
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.29-38
    • /
    • 2005
  • Although people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this paper, we investigate and compare the correlations between such characteristics as cognition and emotion characteristics and judgmental time-series forecasting accuracy by using a self-organizing neural network, and eventually aim to help build efficient decision-making atmosphere. The neural network used in this paper employs a self-supervised adaptive algorithm, and the feature of which is that it inherently can use correlation between input vectors by exchanging information between neuron clusters in the self-organizing layer during the training. Our experiments showed that both cognition and emotion characteristics had correlations with judgmental time-series forecasting, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral and analytical styles, and displeasure-sleepiness style had larger correlation than pleasure-arousal style with the forecasting.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.

Analysis of Adaptation and Self-Consciousness between Supervised and Unsupervised Children (가족구조에 따른 자기보호아동과 성인보호아동의 학교적응 및 자의식 정서)

  • Lee, Jung-Sook;Kim, Eun-Kyung
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.2
    • /
    • pp.85-96
    • /
    • 2008
  • Given the evolving nature of the family unit, a large number of children are being left unsupervised after school. The purpose of this study is to understand the adaptation ability and emotional capacity of these children. To achieve this objective, we investigated the different characteristics of 708 middle-school students in Seoul, dividing them into two categories adult-care children, for whom adults provide care after school, and self-care children for whom no adult supervision was present. In particular, we examined children's adaptation to the school environment and possible self-consciousness difference between self-care and adult-care children, in consideration of their family characteristic; divorced, separated, widowed parent, remarried parents, ordinary families. The results showed that self-care children tend to have a higher rate of shame-proneness and guilt-proneness compared to adult-care children. Furthermore, self-care children exhibited lower school adaptation rate than adult-care children. There was no significant difference in schoolmate relationships between the two groups. In relation to specific family structures, children from reorganized families showed no significant differences in school adaptation and self-conscious, while self-care children from ordinary families revealed low school adaptation and high self-conscious characteristics. The results of this study are critical in the effective analysis and understanding of children's adaptive and emotional behaviors arising from changes in their family structure.

Investigating the Correlation between Cognition and Emotion Charateristics and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기조직 신경망을 이용한 인지 및 감성 특성의 직관적 시계열 예측과의 상관성 조사)

  • Yoo, Hyeon-Joong;Park, Hung-Kook;Song, Byoung-Ho
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.175-186
    • /
    • 2001
  • Though people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this report, we investigate the correlations between characteristics of cognition and emotion and judgmental time-series forecasting accuracy, and compare their strengths by using a self-supervised adaptive neural network. Through the experiments, we hope to help find a desirable atmosphere for decision-making. Our experiments showed that both cognition characteristics and emotion characteristics had correlations with the time-series forecasting accuracy, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral or analytical styles with the accuracy.

  • PDF

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF

A Structure-Adaptive Self-Organizing Map with Combination of Supervised and Unsupervised Learning Algorithms (비교사 학습과 교사 학습 알고리즘을 결합한 구조 적응형 자기구성 지도)

  • 김현돈;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.333-335
    • /
    • 1999
  • 일반적으로 자기구성 지도에서는 구조가 초기에 결정되어 학습이 끝날때까지 변하기 않기 때문에 각 문제에 대한 구조를 반복된 실험을 통해서 최적화시켜야 한다. 그러나, 지도의 구조가 학습중에 적절하게 변경된다면, 해당 문제에 가장 알맞은 구조의 지도를 생성할 수 있을 것이다. 이 논문에서는 기존의 적응형 자기 구성 지도의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기 구성 지도 모델을 제안한다. 이 방법은 일반적인 자기구성 지도 알고리즘보다 작은 수의 노드를 가지고 높은 성능을 보일 뿐만 아니라, 자기 구성 지도의 특성인 위상 보존도 잘 이루어진다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF