• Title/Summary/Keyword: self-organizing neural networks

Search Result 129, Processing Time 0.023 seconds

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

Financial Performance Evaluation using Self-Organizing Maps: The Case of Korean Listed Companies (자기조직화 지도를 이용한 한국 기업의 재무성과 평가)

  • 민재형;이영찬
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.1-20
    • /
    • 2001
  • The amount of financial information in sophisticated large data bases is huge and makes interfirm performance comparisons very difficult or at least very time consuming. The purpose of this paper is to investigate whether neural networks in the form of self-organizing maps (SOM) can be successfully employed to manage the complexity for competitive financial benchmarking. SOM is known to be very effective to visualize results by projecting multi-dimensional financial data into two-dimensional output space. Using the SOM, we overcome the problems of finding an appropriate underlying distribution and the functional form of data when structuring and analyzing a large data base, and show an efficient procedure of competitive financial benchmarking through clustering firms on two-dimensional visual space according to their respective financial competitiveness. For the empirical purpose, we analyze the data base of annual reports of 100 Korean listed companies over the years 1998, 1999, and 2000.

  • PDF

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF

The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph (Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘)

  • Kim J. Y.;Kim C. H.;Song K. S.;Yang D. J.;Jhang J. H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

A self-organizing algorithm for multi-layer neural networks (다층 신경회로망을 위한 자기 구성 알고리즘)

  • 이종석;김재영;정승범;박철훈
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.55-65
    • /
    • 2004
  • When a neural network is used to solve a given problem it is necessary to match the complexity of the network to that of the problem because the complexity of the network significantly affects its learning capability and generalization performance. Thus, it is desirable to have an algorithm that can find appropriate network structures in a self-organizing way. This paper proposes algorithms which automatically organize feed forward multi-layer neural networks with sigmoid hidden neurons for given problems. Using both constructive procedures and pruning procedures, the proposed algorithms try to find the near optimal network, which is compact and shows good generalization performance. The performances of the proposed algorithms are tested on four function regression problems. The results demonstrate that our algorithms successfully generate near-optimal networks in comparison with the previous method and the neural networks of fixed topology.

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

Implementation of Fuzzy Self-Organizing Networks Algorithm and Its Application to Nonlinear Systems (퍼지 자기구성 네트워크 알고리즘의 구현 및 비선형 시스템으로의 응용)

  • Park, Byoung-Jun;Kim, Dong-Won;Lee, Dae-Keun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3001-3003
    • /
    • 2000
  • In this paper. we propose Fuzzy Self-Organizing Networks (FSON) using both Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FSON is generated from the mutually combined structure of both FNN and PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get the better output performance with superb predictive ability. In order to evaluate the performance of proposed models. we use the nonlinear data sets. The results show that the proposed FSON can produce the model with higher accuracy and more robustness than previous any other method.

  • PDF

The Development of Pattern Classification for Inner Defects in Semiconductor packages by Self-Organizing map (자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발)

  • 김재열;윤성운;김훈조;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.80-84
    • /
    • 2002
  • In this study, researchers developed the est algorithm for artificial defects in the semic packages and performed to it by pattern recogn technology. For this purpose, this algorithm was I that researcher made software with matlab. The so consists of some procedures including ultrasonic acquistion, equalization filtering, self-organizing backpropagation neural network. self-organizing ma backpropagation neural network are belong to metho neural networks. And the pattern recognition tech has applied to classify three kinds of detective pa semiconductor packages. that is, crack, delaminat normal. According to the results, it was found estimative algorithm was provided the recognition r 75.7%( for crack) and 83.4%( for delamination) 87.2 % ( for normal).

  • PDF