• 제목/요약/키워드: self-organizing networks

검색결과 177건 처리시간 0.023초

지능형 Self-Organizing Network를 위한 설명 가능한 기계학습 연구 동향 (Trend in eXplainable Machine Learning for Intelligent Self-organizing Networks)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.95-106
    • /
    • 2023
  • As artificial intelligence has become commonplace in various fields, the transparency of AI in its development and implementation has become an important issue. In safety-critical areas, the eXplainable and/or understandable of artificial intelligence is being actively studied. On the other hand, machine learning have been applied to the intelligence of self-organizing network (SON), but transparency in this application has been neglected, despite the critical decision-makings in the operation of mobile communication systems. We describes concepts of eXplainable machine learning (ML), along with research trends, major issues, and research directions. After summarizing the ML research on SON, research directions are analyzed for explainable ML required in intelligent SON of beyond 5G and 6G communication.

다층 신경회로망을 위한 자기 구성 알고리즘 (A self-organizing algorithm for multi-layer neural networks)

  • 이종석;김재영;정승범;박철훈
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.55-65
    • /
    • 2004
  • 신경회로망을 이용하여 주어진 문제를 해결할 때, 문제의 복잡도에 맞는 구조를 찾는 것이 중요하다. 이것은 신경회로망의 복잡도가 학습능력과 일반화 성능에 크게 영향을 주기 때문이다. 그러므로, 문제에 적합한 신경회로망의 구조를 자기 구성적으로 찾는 알고리즘이 유용하다. 본 논문에서는 시그모이드 활성함수를 가지는 전방향 다층 신경회로망에 대하여 주어진 문제에 맞는 구조를 결정하는 알고리즘을 제안한다. 개발된 알고리즘은 구조증가 알고리즘과 연결소거 알고리즘을 이용하여, 주어진 학습 데이터에 대해 가능한 한 작은 구조를 가지며 일반화 성능이 좋은 최적에 가까운 신경회로망을 찾는다. 네 가지 함수 근사화 문제에 적용하여 알고리즘의 성능을 알아본다. 실험 결과에서, 제안한 알고리즘이 기존의 알고리즘 및 고정구조를 갖는 신경회로망과 비교하였을 때 최적 구조에 가까운 신경회로망을 구성하는 것을 확인한다.

병렬 자구성 계층 신경망 (PSHINN)의 구조 (Architectures of the Parallel, Self-Organizing Hierarchical Neural Networks)

  • 윤영우;문태현;홍대식;강창언
    • 전자공학회논문지B
    • /
    • 제31B권1호
    • /
    • pp.88-98
    • /
    • 1994
  • A new neural network architecture called the Parallel. Self-Organizing Hierarchical Neural Network (PSHNN) is presented. The new architecture involves a number of stages in which each stage can be a particular neural network (SNN). The experiments performed in comparison to multi-layered network with backpropagation training and indicated the superiority of the new architecture in the sense of classification accuracy, training time,parallelism.

  • PDF

Recognize vowel using self organizing map

  • Jang, Sung-Hwan;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.115.4-115
    • /
    • 2001
  • This paper deals with recognizing ten korean voiced vowels using Self Organizing Map. SOM is a good classifier. The output layer is composed of two dimensions. The input vector is the frequency values having the characteristic of voiced vowels. The short time frequency transform is used getting input vector. The final neural networks is attached SOM output layer.

  • PDF

자율구성 계층구조 애드혹 네트워크를 위한 상호 연동방식의 토폴로지 탐색 및 라우팅 프로토콜 (A Joint Topology Discovery and Routing Protocol for Self-Organizing Hierarchical Ad Hoc Networks)

  • 양서민;이혁준
    • 정보처리학회논문지C
    • /
    • 제11C권7호
    • /
    • pp.905-916
    • /
    • 2004
  • 자율구성 계층구조 에드혹 네트워크(Self-organizing hierarchical ad hoc network, SOHAN)는 편평구조 에드혹 네트워크의 확장성을 향상시키기 위해 설계된 새로운 형태, 즉, 액세스 포인트, 전달 노드, 이동 노드의 3 계층의 애드혹 노드로 구성된 네트워크 구조이다. 본 논문에서는 SOHAN의 자율구성을 위한 토폴로지 탐색과 라우팅 프로토콜을 소개한다. 또한 높은 전송 용량을 갖는 최적의 클러스터 기반 계층구조 토폴로지를 형성하기 위한 링크 품질 및 MAC 지연 시간 기반의 크로스레이어 설계방식의 경로 척도를 제안한다. 토폴로지 탐색 프로토콜은 2.5 계층에서 MAC 주소를 기반으로 동작하는 라우팅 프로토콜을 위한 기본적인 정보를 제공한다. 이 라우팅 프로토콜은 AODV 프로토콜을 기반으로 하며, 계층구조의 장점을 활용하기 위해 토폴로지 탐색 프로토콜과 상호 연동하도록 설계된다. 시뮬레이션을 통해 전송용량, 종단간 지연시간, 패킷 전달률, 제어 오버헤드 관점에서 SOHAN의 우수한 성능과 확장성을 보인다.

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

Self-Organizing Network에서 기계학습 연구동향-I (Research Status of Machine Learning for Self-Organizing Network - I)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.103-114
    • /
    • 2020
  • In this study, a machine learning (ML) algorithm is analyzed and summarized as a self-organizing network (SON) realization technology that can minimize expert intervention in the planning, configuration, and optimization of mobile communication networks. First, the basic concept of the ML algorithm in which areas of the SON of this algorithm are applied, is briefly summarized. In addition, the requirements and performance metrics for ML are summarized from the SON perspective, and the ML algorithm that has hitherto been applied to an SON achieves a performance in terms of the SON performance metrics.

자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발 (The Development of Pattern Classification for Inner Defects in Semiconductor packages by Self-Organizing map)

  • 김재열;윤성운;김훈조;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2002
  • In this study, researchers developed the est algorithm for artificial defects in the semic packages and performed to it by pattern recogn technology. For this purpose, this algorithm was I that researcher made software with matlab. The so consists of some procedures including ultrasonic acquistion, equalization filtering, self-organizing backpropagation neural network. self-organizing ma backpropagation neural network are belong to metho neural networks. And the pattern recognition tech has applied to classify three kinds of detective pa semiconductor packages. that is, crack, delaminat normal. According to the results, it was found estimative algorithm was provided the recognition r 75.7%( for crack) and 83.4%( for delamination) 87.2 % ( for normal).

  • PDF

Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘 (The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph)

  • 김재열;김창현;송경석;양동조;장종훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.