• Title/Summary/Keyword: self-organizing networks

Search Result 177, Processing Time 0.018 seconds

Financial Performance Evaluation using Self-Organizing Maps: The Case of Korean Listed Companies (자기조직화 지도를 이용한 한국 기업의 재무성과 평가)

  • 민재형;이영찬
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.1-20
    • /
    • 2001
  • The amount of financial information in sophisticated large data bases is huge and makes interfirm performance comparisons very difficult or at least very time consuming. The purpose of this paper is to investigate whether neural networks in the form of self-organizing maps (SOM) can be successfully employed to manage the complexity for competitive financial benchmarking. SOM is known to be very effective to visualize results by projecting multi-dimensional financial data into two-dimensional output space. Using the SOM, we overcome the problems of finding an appropriate underlying distribution and the functional form of data when structuring and analyzing a large data base, and show an efficient procedure of competitive financial benchmarking through clustering firms on two-dimensional visual space according to their respective financial competitiveness. For the empirical purpose, we analyze the data base of annual reports of 100 Korean listed companies over the years 1998, 1999, and 2000.

  • PDF

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks (퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계)

  • Park, Byeong-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

The Development of Pattern Classification for Inner Defects in Semiconductor Packages by Self-Organizing Map (자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발)

  • 김재열;윤성운;김훈조;김창현;양동조;송경석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.65-70
    • /
    • 2003
  • In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Implementation of Fuzzy Self-Organizing Networks Algorithm and Its Application to Nonlinear Systems (퍼지 자기구성 네트워크 알고리즘의 구현 및 비선형 시스템으로의 응용)

  • Park, Byoung-Jun;Kim, Dong-Won;Lee, Dae-Keun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3001-3003
    • /
    • 2000
  • In this paper. we propose Fuzzy Self-Organizing Networks (FSON) using both Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FSON is generated from the mutually combined structure of both FNN and PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get the better output performance with superb predictive ability. In order to evaluate the performance of proposed models. we use the nonlinear data sets. The results show that the proposed FSON can produce the model with higher accuracy and more robustness than previous any other method.

  • PDF

Research Status on Machine Learning for Self-Organizing Network-II (Self-Organizing Network에서 기계학습 연구동향-II)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.115-134
    • /
    • 2020
  • Several studies on machine learning (ML) based self-organizing networks (SONs) have been conducted, specifically for LTE, since studies to apply ML to optimize mobile communication systems started with 2G. However, they are still in the infancy stage. Owing to the complicated KPIs and stringent user requirements of 5G, it is necessary to design the 5G SON engine with intelligence to enable users to seamlessly and unlimitedly achieve connectivity regardless of the state of the mobile communication network. Therefore, in this study, we analyze and summarize the current state of machine learning studies applied to SONs as solutions to the complicated optimization problems that are caused by the unpredictable context of mobile communication scenarios.

Machine-Part Grouping with Alternative Process Plan - An algorithm based on the self-organizing neural networks - (대체공정이 있는 기계-부품 그룹의 형성 - 자기조직화 신경망을 이용한 해법 -)

  • Jeon, Yong-Deok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.83-89
    • /
    • 2016
  • The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF