• Title/Summary/Keyword: self-organizing algorithm

Search Result 261, Processing Time 0.025 seconds

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

The Design of Self-Organizing Map Using Pseudo Gaussian Function Network

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.6-42
    • /
    • 2002
  • Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...

  • PDF

On the Development of Risk Factor Map for Accident Analysis using Textmining and Self-Organizing Map(SOM) Algorithms (재해분석을 위한 텍스트마이닝과 SOM 기반 위험요인지도 개발)

  • Kang, Sungsik;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.77-84
    • /
    • 2018
  • Report documents of industrial and occupational accidents have continuously been accumulated in private and public institutes. Amongst others, information on narrative-texts of accidents such as accident processes and risk factors contained in disaster report documents is gaining the useful value for accident analysis. Despite this increasingly potential value of analysis of text information, scientific and algorithmic text analytics for safety management has not been carried out yet. Thus, this study aims to develop data processing and visualization techniques that provide a systematic and structural view of text information contained in a disaster report document so that safety managers can effectively analyze accident risk factors. To this end, the risk factor map using text mining and self-organizing map is developed. Text mining is firstly used to extract risk keywords from disaster report documents and then, the Self-Organizing Map (SOM) algorithm is conducted to visualize the risk factor map based on the similarity of disaster report documents. As a result, it is expected that fruitful text information buried in a myriad of disaster report documents is analyzed, providing risk factors to safety managers.

Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms (진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tea-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Image VQ Using Two-Stage Self-Organizing Feature Map in the Transform Domain (2 단 Self-Organizing Feature Map 을 사용한 변환 영역 영상의 벡터 양자화)

  • 이동학;김영환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.57-65
    • /
    • 1995
  • This paper presents a new classified vector quantization (VQ) technique using a neural network model in the transform domain. Prior to designing a codebook, the proposed approach extracts class features from a set of images using self-organizing feature map (SOFM) that has the pattern recognition characteristics and the same as VQ objective. Since we extract the class features from the training images unlike previous approaches, the reconstructed image quality is improved. Moreover, exploiting the adaptivity of the neural network model makes our approach be easily applied to designing a new vector quantizer when the processed image characteristics are changed. After the generalized BFOS algorithm allocates the given bits to each class, codebooks of each class are also generated using SOFM for the maximal reconstructed image quality. In experimental results using monochromatic images, we obtained a good visual quality in the reconstructed image. Also, PSNR is comparable to that of other classified VQ technique and is higher than that of JPEG baseline system.

  • PDF

A New Speech Recognition Model : Dynamically Localized Self-organizing Map Model (새로운 음성 인식 모델 : 동적 국부 자기 조직 지도 모델)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.20-24
    • /
    • 1994
  • A new speech recognition model, DLSMM(Dynamically Localized Self-organizing Map Model) and its effective training algorithm are proposed in this paper. In DLSMM, temporal and spatial distortions of speech are efficiently normalized by dynamic programming technique and localized self-organizing maps, respectively. Experiments on Korean digits recognition have been carried out. DLSMM has smaller Experiments on Korean digits recognition have been carried out. DLSMM has smaller connections than predictive neural network models, but it has scored a little high recognition rate.

  • PDF

A Self-Organizing Network for Normal Mixtures (자기조직화 신경망을 이용한 정규혼합분포의 추정)

  • Ahn, Sung-Mahn;Kim, Myeong-Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.837-849
    • /
    • 2011
  • A self-organizing network is designed to estimate parameters of normal mixtures. SOMN achieves fast convergence and low possibility of divergence even when sample sizes are small, while PMLE eliminate unnecessary components. The proposed network effectively combines the good properties of SOMN and PMLE. Simulation verifies that the proposed network eliminates unnecessary components in normal mixtures when sample sizes are relatively small.

Flood Stage Forecasting using Kohonen Self-Organizing Map (코호넨 자기조직화함수를 이용한 홍수위 예측)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1427-1431
    • /
    • 2007
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

The Implementation of the structure and algorithm of Fuzzy Self-organizing Neural Networks(FSONN) based on FNN (FNN에 기초한 Fuzzy Self-organizing Neural Network(FSONN)의 구조와 알고리즘의 구현)

  • 김동원;박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.114-117
    • /
    • 2000
  • In this paper, Fuzzy Self-organizing Neural Networks(FSONN) based on Fuzzy Neural Networks(FNN) is proposed to overcome some problems, such as the conflict between ovefitting and good generation, and low reliability. The proposed FSONN consists of FNN and SONN. Here, FNN is used as the premise part of FSONN and SONN is the consequnt part of FSONN. The FUN plays the preceding role of FSONN. For the fuzzy reasoning and learning method in FNN, Simplified fuzzy reasoning and backpropagation learning rule are utilized. The number of layers and the number of nodes in each layers of SONN that is based on the GMDH method are not predetermined, unlike in the case of the popular multi layer perceptron structure and can be generated. Also the partial descriptions of nodes can use various forms such as linear, modified quadratic, cubic, high-order polynomial and so on. In this paper, the optimal design procedure of the proposed FSONN is shown in each step and performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

Design of a Self-Organizing Fuzzy Controller Using the Look-Up Tables (룩업 테이블을 이용한 자동 학습 퍼지 제어기의 설계에 관한 연구)

  • 이용노;김태원;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.76-87
    • /
    • 1992
  • A novel self-organizing fuzzy plus PD control algorithm is proposed, where the proposed controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the Look-Up Table(LUT) for the fuzzy control rules and to decide how much fuzzy rules are to be modifid after evaluating the control performance, respectively. And the fuzzy controller is replaced by a PD controller in a prespecified region nearby the set point for good settling actions, where gain parameters are determined by fuzzy rules based on the magnitude of error velocity at the instant when the output penetrates into the prespecified region. To show the effectiveness of the proposed controller, extensive computer simulation results as well as experimental results are illustrated for an inverted pendulum system.

  • PDF