• Title/Summary/Keyword: self-organizing algorithm

Search Result 261, Processing Time 0.027 seconds

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization (자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬)

  • 양보석;서상윤;임동수;이수종
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Research Status of Machine Learning for Self-Organizing Network - I (Self-Organizing Network에서 기계학습 연구동향-I)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.103-114
    • /
    • 2020
  • In this study, a machine learning (ML) algorithm is analyzed and summarized as a self-organizing network (SON) realization technology that can minimize expert intervention in the planning, configuration, and optimization of mobile communication networks. First, the basic concept of the ML algorithm in which areas of the SON of this algorithm are applied, is briefly summarized. In addition, the requirements and performance metrics for ML are summarized from the SON perspective, and the ML algorithm that has hitherto been applied to an SON achieves a performance in terms of the SON performance metrics.

A Straight-Line Detecting Algorithm Using a Self-Organizing Map (자기조직화지도를 이용한 직선 추출 알고리즘)

  • Lee Moon-Kyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.886-893
    • /
    • 2002
  • The standard Hough transform has been dominantly used to detect straight lines in an image. However, massive storage requirement and low precision in estimating line parameters due to the quantization of parameter space are the major drawbacks of the Hough transform technique. In this paper, to overcome the drawbacks, an iterative algorithm based on a self-organizing map is presented. The self-organizing map can be adaptively learned such that image points are clustered by prominent lines. Through the procedure of the algorithm, a set of lines are sequentially detected one at a time. Computational results for synthetically generated images are given. The promise of the algorithm is also demonstrated with its application to two natural images of inserts.

  • PDF

The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph (Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘)

  • Kim J. Y.;Kim C. H.;Song K. S.;Yang D. J.;Jhang J. H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

Hierarchical Clustering of Gene Expression Data Based on Self Organizing Map (자기 조직화 지도에 기반한 유전자 발현 데이터의 계층적 군집화)

  • Park, Chang-Beom;Lee, Dong-Hwan;Lee, Seong-Whan
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.170-177
    • /
    • 2003
  • Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.

  • PDF

Self-Organizing Feature Map with Constant Learning Rate and Binary Reinforcement (일정 학습계수와 이진 강화함수를 가진 자기 조직화 형상지도 신경회로망)

  • 조성원;석진욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.180-188
    • /
    • 1995
  • A modified Kohonen's self-organizing feature map (SOFM) algorithm which has binary reinforcement function and a constant learning rate is proposed. In contrast to the time-varing adaptaion gain of the original Kohonen's SOFM algorithm, the proposed algorithm uses a constant adaptation gain, and adds a binary reinforcement function in order to compensate for the lowered learning ability of SOFM due to the constant learning rate. Since the proposed algorithm does not have the complicated multiplication, it's digital hardware implementation is much easier than that of the original SOFM.

  • PDF

The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function (시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성)

  • Seok, Jin-Uk;Jo, Seong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

Marine Self-organizing VHF Data Link: Operational Principle

  • Sun, Wen-Li;Pang, Fu-Wen;Hong, Tchang-Hee
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.21-29
    • /
    • 1998
  • The marine self-organizing VHF data link is a digital radio link with self-organizing ability, which exploits the STDMA algorithm and operates in marine VHF channels. It can support the applications of surveillance, situation awareness and communication. It is the core technology of the Universal AIS which is considered as a future surveillance system at sea by the IMO. In this paper, the operational principle of the marine self-organizing VHF data link is introduced. Simultaneously, a new access protocol is proposed to enhance the marine self-organizing VHF data link so as to support point-to-point communication. The point-to-point communication is one of the most important bases to establish dynamic internetworks among computers on the bridges in the future.

  • PDF

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.