• Title/Summary/Keyword: self-learning filter

Search Result 13, Processing Time 0.025 seconds

A Novel Self-Learning Filters for Automatic Modulation Classification Based on Deep Residual Shrinking Networks

  • Ming Li;Xiaolin Zhang;Rongchen Sun;Zengmao Chen;Chenghao Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1743-1758
    • /
    • 2023
  • Automatic modulation classification is a critical algorithm for non-cooperative communication systems. This paper addresses the challenging problem of closed-set and open-set signal modulation classification in complex channels. We propose a novel approach that incorporates a self-learning filter and center-loss in Deep Residual Shrinking Networks (DRSN) for closed-set modulation classification, and the Opendistance method for open-set modulation classification. Our approach achieves better performance than existing methods in both closed-set and open-set recognition. In closed-set recognition, the self-learning filter and center-loss combination improves recognition performance, with a maximum accuracy of over 92.18%. In open-set recognition, the use of a self-learning filter and center-loss provide an effective feature vector for open-set recognition, and the Opendistance method outperforms SoftMax and OpenMax in F1 scores and mean average accuracy under high openness. Overall, our proposed approach demonstrates promising results for automatic modulation classification, providing better performance in non-cooperative communication systems.

The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function (시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성)

  • Seok, Jin-Uk;Jo, Seong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

A Study on the Neural Network for the Character Recognition (문자인식을 위한 신경망컴퓨터에 관한 연구)

  • 이창기;전병실
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.1-6
    • /
    • 1992
  • This paper proposed a neural computer architecture for the learning of script character pattern recognition categories. Oriented filter with complex cells preprocess about the input script character, abstracts contour from the character. This contour normalized and inputed to the ART. Top-down attentional and matching mechanisms are critical in self-stabilizing of the code learning process. The architecture embodies a parallel search scheme that updates itself adaptively as the learning process unfolds. After learning ART self-stabilizes, recognition time does not grow as a function of code complexity. Vigilance level shows the similarity between learned patterns and new input patterns. This character recognition system is designed to adaptable. The simulation of this system showed satisfied result in the recognition of the hand written characters.

  • PDF

Design and Implementation of Smart Self-Learning Aid: Micro Dot Pattern Recognition based Information Embedding Solution (스마트 학습지: 미세 격자 패턴 인식 기반의 지능형 학습 도우미 시스템의 설계와 구현)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.346-349
    • /
    • 2011
  • In this paper, we design a perceptually invisible dot pattern layout and its recognition scheme, and we apply the recognition scheme into a smart self learning aid for interactive learning aid. To increase maximum information capacity and also increase robustness to the noises, we design a ECC (error correcting code) based dot pattern with directional vector indicator. To make a smart self-learning aid, we embed the micro dot pattern (20 information bit + 15 ECC bits + 9 layout information bit) using K ink (CMYK) and extract the dot pattern using IR (infrared) LED and IR filter based camera, which is embedded in the smart pen. The reason we use K ink is that K ink is a carbon based ink in nature, and carbon is easily recognized with IR even without light. After acquiring IR camera images for the dot patterns, we perform layout adjustment using the 9 layout information bit, and extract 20 information bits from 35 data bits which is composed of 20 information bits and 15 ECC bits. To embed and extract information bits, we use topology based dot pattern recognition scheme which is robust to geometric distortion which is very usual in camera based recognition scheme. Topology based pattern recognition traces next information bit symbols using topological distance measurement from the pivot information bit. We implemented and experimented with sample patterns, and it shows that we can achieve almost 99% recognition for our embedding patterns.

Speed Control of Two-Mass System Using Neural Network Estimator (신경망 추정기를 이용한 2관성 공진계의 속도 제어)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choi, Ick;Kim, Kwang-Bae;Lee, Kwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.286-293
    • /
    • 1999
  • A new control scheme using a torsional torque estimator based on a neural network is proposed and investigated for improving control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vibration response, compared with the disturbance observer-based control method. This result comes from the fact that the proposed neural network estimator keeps the self-learning capability, whereas the disturbance observer-based torque estimator with low pass filter should dbjust the time constant of the adopted filter according to the natural resonance frequency detemined by considering the system parameters varied. The simulation results shows the validity of the proposed control scheme.

  • PDF

CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills (CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계)

  • Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.

Recognition of Resident Registration Card using ART-1 based Self-Organizing Supervised Learning Algorithm And Face Recognition (ART-1 기반 자가 생성 지도 학습 알고리즘과 얼굴 인증을 이용한 주민등록증 인식)

  • Shin Tae-Sung;Park Choong-Shik;Moon Yong-Eun;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.313-318
    • /
    • 2006
  • 본 논문에서는 ART-1 기반 자가 생성 지도학습 알고리즘과 얼굴 인증을 이용한 주민등록증 인식방법을 제안한다. 본 논문에서는 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위해, 획득된 주민등록증의 영상에서 Sobel Mask와 Median Filter를 이용하여 윤곽선을 추출하고 잡음을 제거한 후, 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 각각 추출한다. 그리고 고주파 필터링을 적용하여 추출된 영역을 이진화하고 4방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART-1 기반 자가 생성 지도학습 알고리즘을 적용하여 인식한다. 얼굴 인증은 Template Matching 방법을 적용하여 Face Template Database를 구축하고, 획득된 주민등록증의 얼굴 영역과의 유사도를 측정하여 주민등록증의 사진 위조 여부를 판별한다. 제안된 주민등록증 인식 방법의 성능을 평가하기 위해 10개의 주민등록증을 대상으로 실험하였고 원본 주민등록증 영상에서 사진과 얼굴 부분을 위조한 주민등록증에 대해 얼굴 인증 실험을 하였다. 실험을 통해 제안된 방법이 주민등록번호 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF