• Title/Summary/Keyword: self-learning

Search Result 4,092, Processing Time 0.033 seconds

Optimization of 1D CNN Model Factors for ECG Signal Classification

  • Lee, Hyun-Ji;Kang, Hyeon-Ah;Lee, Seung-Hyun;Lee, Chang-Hyun;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.29-36
    • /
    • 2021
  • In this paper, we classify ECG signal data for mobile devices using deep learning models. To classify abnormal heartbeats with high accuracy, three factors of the deep learning model are selected, and the classification accuracy is compared according to the changes in the conditions of the factors. We apply a CNN model that can self-extract features of ECG data and compare the performance of a total of 48 combinations by combining conditions of the depth of model, optimization method, and activation functions that compose the model. Deriving the combination of conditions with the highest accuracy, we obtained the highest classification accuracy of 97.88% when we applied 19 convolutional layers, an optimization method SGD, and an activation function Mish. In this experiment, we confirmed the suitability of feature extraction and abnormal beat detection of 1-channel ECG signals using CNN.

Pedestrian and Vehicle Distance Estimation Based on Hard Parameter Sharing (하드 파라미터 쉐어링 기반의 보행자 및 운송 수단 거리 추정)

  • Seo, Ji-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.389-395
    • /
    • 2022
  • Because of improvement of deep learning techniques, deep learning using computer vision such as classification, detection and segmentation has also been used widely at many fields. Expecially, automatic driving is one of the major fields that applies computer vision systems. Also there are a lot of works and researches to combine multiple tasks in a single network. In this study, we propose the network that predicts the individual depth of pedestrians and vehicles. Proposed model is constructed based on YOLOv3 for object detection and Monodepth for depth estimation, and it process object detection and depth estimation consequently using encoder and decoder based on hard parameter sharing. We also used attention module to improve the accuracy of both object detection and depth estimation. Depth is predicted with monocular image, and is trained using self-supervised training method.

A study on the Experience of Nursing Department Mature-age students Major Course (간호학과 만학도의 전공 과정 경험 연구)

  • Kim, Mi–Hwa;CHO, Eun Ha
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.19-26
    • /
    • 2022
  • The purpose is a qualitative study that explores the essential meaning of problems in the academic performance process with respect to college life targeting Nursing students in Mature-age students. The participants of this study were 15 students who were 4th graders from a university in K city, Gyeongsangbuk-do, and who had passion for learning and had an awareness of it. As for the data collection, the experiences related to the life of Mature-age students were written through interviews and self-reports within 48 hours of asking questions as a student. The collected data were analyzed using Krippendorff's phenomenological method. As a result of analyzing the experiences of Nursing students in Mature-age students, 34 meaningful statements in 4 categories and 14 topics were derived. The four categories were derived as 'endless hardship', 'the reason for being with them even at the end of the school year', 'the confidence to find slowly', and 'learning life in the academic process'. As a result of this study, it is expected that Adult Learners nursing students will be used as basic data for a program useful for stable and smooth college adaptation and nurturing healthy nursing professions in the future.

Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency

  • Lee, Jae-Hong;Kim, Young-Taek;Lee, Jong-Bin;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.220-229
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate and compare the accuracy performance of dental professionals in the classification of different types of dental implant systems (DISs) using panoramic radiographic images with and without the assistance of a deep learning (DL) algorithm. Methods: Using a self-reported questionnaire, the classification accuracy of dental professionals (including 5 board-certified periodontists, 8 periodontology residents, and 31 dentists not specialized in implantology working at 3 dental hospitals) with and without the assistance of an automated DL algorithm were determined and compared. The accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic (ROC) curves, and area under the ROC curves were calculated to evaluate the classification performance of the DL algorithm and dental professionals. Results: Using the DL algorithm led to a statistically significant improvement in the average classification accuracy of DISs (mean accuracy: 78.88%) compared to that without the assistance of the DL algorithm (mean accuracy: 63.13%, P<0.05). In particular, when assisted by the DL algorithm, board-certified periodontists (mean accuracy: 88.56%) showed higher average accuracy than did the DL algorithm, and dentists not specialized in implantology (mean accuracy: 77.83%) showed the largest improvement, reaching an average accuracy similar to that of the algorithm (mean accuracy: 80.56%). Conclusions: The automated DL algorithm classified DISs with accuracy and performance comparable to those of board-certified periodontists, and it may be useful for dental professionals for the classification of various types of DISs encountered in clinical practice.

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

Application of Deep Learning-based Object Detection and Distance Estimation Algorithms for Driving to Urban Area (도심로 주행을 위한 딥러닝 기반 객체 검출 및 거리 추정 알고리즘 적용)

  • Seo, Juyeong;Park, Manbok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.83-95
    • /
    • 2022
  • This paper proposes a system that performs object detection and distance estimation for application to autonomous vehicles. Object detection is performed by a network that adjusts the split grid to the input image ratio using the characteristics of the recently actively used deep learning model YOLOv4, and is trained to a custom dataset. The distance to the detected object is estimated using a bounding box and homography. As a result of the experiment, the proposed method improved in overall detection performance and processing speed close to real-time. Compared to the existing YOLOv4, the total mAP of the proposed method increased by 4.03%. The accuracy of object recognition such as pedestrians, vehicles, construction sites, and PE drums, which frequently occur when driving to the city center, has been improved. The processing speed is approximately 55 FPS. The average of the distance estimation error was 5.25m in the X coordinate and 0.97m in the Y coordinate.

Development of PBL Application Class Module and Convergence Application Experience in one university Scenario-based Adult Nursing Simulation Training (일개 대학 시나리오 기반 성인간호학 시뮬레이션 실습 교육에서 PBL 적용 수업 모듈 개발 및 융합적 적용 경험)

  • Young-Hee Jeong
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • This study aimed to improve the quality of classes through the application experience analysis after applying the adult nursing simulation practice modules with PBL. Quantitative and qualitative data such as from satisfaction, validity, self-reflection, and lecture evaluation in 68 nursing students were analyzed after the semester. Satisfaction was 4.64 points out of 5 points, and 'I want to recommend this class to other friends' was the highest. It was appropriate for the validity as 64.7% to 100% positve answer. From the qualitative data analysis of lecture evaluation, it was categorized into 5 thematic groups : 'increased immersion related to a lively class environment', 'growth of knowledge and skills through learners' active participation', 'improvement of mutual collaboration skills through team-based problem-solving process', 'Improvement of problem-solving ability through situational crisis coping process' and 'Improvement of individual comprehension through close teaching'. The continuous development of PBL learning strategies and development of various scenarios are required in the future.

Exploring the Effectiveness of GAN-based Approach and Reinforcement Learning in Character Boxing Task (캐릭터 복싱 과제에서 GAN 기반 접근법과 강화학습의 효과성 탐구)

  • Seoyoung Son;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.7-16
    • /
    • 2023
  • For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.

Deep Learning-based Pixel-level Concrete Wall Crack Detection Method (딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.197-207
    • /
    • 2023
  • Concrete is a widely used material due to its excellent compressive strength and durability. However, depending on the surrounding environment and the characteristics of the materials used in the construction, various defects may occur, such as cracks on the surface and subsidence of the structure. The detects on the surface of the concrete structure occur after completion or over time. Neglecting these cracks may lead to severe structural damage, necessitating regular safety inspections. Traditional visual inspections of concrete walls are labor-intensive and expensive. This research presents a deep learning-based semantic segmentation model designed to detect cracks in concrete walls. The model addresses surface defects that arise from aging, and an image augmentation technique is employed to enhance feature extraction and generalization performance. A dataset for semantic segmentation was created by combining publicly available and self-generated datasets, and notable semantic segmentation models were evaluated and tested. The model, specifically trained for concrete wall fracture detection, achieved an extraction performance of 81.4%. Moreover, a 3% performance improvement was observed when applying the developed augmentation technique.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.