컴퓨터 비전의 하위 태스크(Task)인 의미론적 분할(Semantic Segmentation)은 자율주행, 해상에서 선박찾기 등 다양한 분야에서 연구되고 있다. 기존 FCN(Fully Conovlutional Networks) 기반 의미론적 분할 모델은 다운샘플링(Dowsnsampling)과정에서 공간정보의 손실이 발생하여 정확도가 하락했다. 본 논문에서는 공간정보 손실을 완화하고자 PSA(Polarized Self-attention)의 공간정보 강조 모듈을 HRNet(High-resolution Networks)의 합성곱 블록 사이에 추가한다. 실험결과 파라미터는 3.1M, GFLOPs는 3.2G 증가했으나 mIoU는 0.26% 증가했다. 공간정보가 의미론적 분할 정확도에 영향이 미치는 것을 확인했다.
최근 Document Retrieval을 비롯한 대부분의 자연어처리 분야에서는 BERT와 같이 self-attention을 기반으로 한 사전훈련 모델을 활용하여 SOTA(state-of-the-art)를 이루고 있다. 그러나 self-attention 메커니즘은 입력 텍스트 길이의 제곱에 비례하여 계산 복잡도가 증가하기 때문에, 해당 모델들은 선천적으로 입력 텍스트의 길이가 제한되는 한계점을 지닌다. Document Retrieval 분야에서는, 문서를 특정 토큰 길이 단위의 문단으로 나누어 각 문단의 유사 점수 또는 표현 벡터를 추출한 후 집계함으로서 길이 제한 문제를 해결하는 방법론이 하나의 주류를 이루고 있다. 그러나 논문, 특허와 같이 섹션 형식(초록, 결론 등)을 갖는 문서의 경우, 섹션 유형에 따라 고유한 정보 특성을 지닌다. 따라서 문서를 단순히 특정 길이의 문단으로 나누어 학습하는 PARADE와 같은 기존 방법론은 각 섹션이 지닌 특성을 반영하지 못한다는 한계점을 지닌다. 본 논문에서는 섹션 유형에 대한 정보를 포함하는 문단 표현을 학습한 후, 트랜스포머 인코더를 사용하여 집계함으로서, 결과적으로 섹션의 특징과 상호 정보를 학습할 수 있도록 하는 SERADE 모델을 제안하고자 한다. 실험 결과, PARADE-Transformer 모델과 비교하여 평균 3.8%의 성능 향상을 기록하였다.
Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
Asia pacific journal of information systems
/
제30권4호
/
pp.719-740
/
2020
The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.
본 연구는 조건과정모델링에 기초하여 공익광고캠페인의 정서성과 이슈에 대한 수용적 태도의 관계에서 시각적 주의와 지각된 자아관련성의 매개효과와 매개변인에 대한 EEG 각성의 조절효과를 알아보고자 했다. 이를 위해 SPSS 22.0의 Multiple Mediation 절차와 SPSS Macro(14번)를 이용하여 조절된 매개효과를 분석하였다. 본 연구결과는 첫째, 공익캠페인의 정서성은 지각된 자아관련성을 매개로 이슈에 대한 수용적 태도에 유의미한 영향을 보였다. 둘째, EEG 각성은 시각적 주의 및 지각된 자아관련성과 유의미한 상호작용효과를 나타냈다. 셋째, 정서성과 수용적 태도의 관계에서 지각된 자아관련성의 매개효과는 EEG 각성에 의해 조절되는 효과를 보였다. 본 연구결과는 공익캠페인의 부정소구보다는 긍정소구에서만 유효하였다. 이러한 결과를 바탕으로 공익광고캠페인의 정서소구를 활용하기 위해서는 공익캠페인에 대한 소비자의 지각된 자아관련성과 주의를 전략적으로 결합할 수 있음을 확인하였다.
데이트폭력이 심각한 사회문제로 부각됨에 따라, 본 연구는 데이트 관계에서 내면화된 수치심이 통제행동에 미치는 영향을 알아보았다. 특히 내면화된 수치심의 네 가지 하위요인(부적절감, 공허, 자기처벌, 실수불안)과 통제행동 간 관계에서 부적응적 자기초점적 주의인 자기몰입의 매개효과를 살펴보았다. 20-30대 미혼 남녀 200명을 대상으로 연구한 결과, 내면화된 수치심이 높을수록 자기몰입을 더 많이 하고, 데이트 관계에서 상대에 대한 통제행동을 더 많이 하였다. 또한, 자기몰입을 더 많이 하는 사람일수록 데이트 관계에서 통제행동을 더 많이 하였다. 내면화된 수치심의 하위요인(부적절감, 공허, 자기처벌, 실수불안)과 통제행동 간의 관계에서 자기몰입의 매개효과가 유의하였다. 즉, 스스로에 대해 부적절감이 높을수록, 공허감을 많이 느낄수록, 자기처벌을 많이 할수록, 실수불안이 클수록 자기몰입을 더 많이 하며, 자기몰입을 많이 할수록 데이트 관계에서 상대방에 대한 통제행동을 더 많이 하였다.
The Journal of Asian Finance, Economics and Business
/
제6권2호
/
pp.147-160
/
2019
Compared with the research on consumer engagement in brand community, the research on consumer engagement in brand public has been relatively less. This research aimed at exploring how brand public characteristics such as information variety, various communications and no limitation in expressing self affect the brand public engagement. 274 questionnaires answered by Chinese consumers are used to conduct analysis. Principal component analysis is used to test the reliability and validity of each construct, and structural equation model is used to test hypotheses. The study finds the positive effects of information variety on information benefits, those of various communications on social benefits, and also positive roles of no limitation in expressing self to brand-related self-expression motivation. And each of the information benefits, social benefits and brand-related self-expression motivation is proved to positively affect brand public engagement. The study implies that marketers should give attention to characteristics of brand public, and provide the ways by which members of brand public engage the brand. Additionally, marketers should pay more attention to both direct and indirect engagement activities of consumers toward brand public in social media to better understand their target consumers.
The present research was designed to study the effect of gender differences and focus of attention (on sadness and on joy) in altruistic behavior. The subjects were 74 boys and 76 girls from a junior high school in Seoul. Emotion arousing and focus of attention identifying methods were used. Statistical analyses were with two-way ANOVA and $Scheff\acute{e}$ test. There were significant differences in altruisic behavior between the sadness self-oriented group and the sadness other-oriented group. The results were explained in terms of the accessibility of cognitive contents.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4665-4683
/
2019
Previous methods build image annotation model by leveraging three basic dependencies: relations between image and label (image/label), between images (image/image) and between labels (label/label). Even though plenty of researches show that multiple dependencies can work jointly to improve annotation performance, different dependencies actually do not "work jointly" in their diagram, whose performance is largely depending on the result predicted by image/label section. To address this problem, we propose the adaptive attention annotation model (AAAM) to associate these dependencies with the prediction path, which is composed of a series of labels (tags) in the order they are detected. In particular, we optimize the prediction path by detecting the relevant labels from the easy-to-detect to the hard-to-detect, which are found using Binary Cross-Entropy (BCE) and Triplet Margin (TM) losses, respectively. Besides, in order to capture the inforamtion of each label, instead of explicitly extracting regional featutres, we propose the self-attention machanism to implicitly enhance the relevant region and restrain those irrelevant. To validate the effective of the model, we conduct experiments on three well-known public datasets, COCO 2014, IAPR TC-12 and NUSWIDE, and achieve better performance than the state-of-the-art methods.
Journal of information and communication convergence engineering
/
제10권3호
/
pp.300-306
/
2012
An image attention model and its application to image quality assessment are discussed in this paper. The attention model is based on rarity quantification, which is related to self-information to attract the attention in an image. It is relatively simpler than the others but results in taking more consideration of global contrasts between a pixel and the whole image. The visual attention model is used to develop a local distortion predictor, named color visual differences predictor (CVDP), in color images in order to effectively detect luminance and color distortions.
한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
/
pp.293-293
/
2006
Self-assembled nanostructures of block copolymer thin films have gathered significant attention due to their potential applications as templates for nanofabrication. However the lack of a robust strategy to control the structure formation in thin film geometries has been considered a major obstacle for the practical application. In this presentation 'epitaxial self-assembly' will be introduced as a successful strategy to control the self-assembled nanostructure of block copolymer. Chemically patterned surfaces prepared by advanced lithographic techniques successfully registered nanodomains in block copolymer thin film without any single defect over an arbitrarily large area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.