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I. INTRODUCTION 
 

An image is composed of a number of regions that 
contain background, foreground, textures, and meaningful 
objects. In other words, an image is a set of attention objects 
(AO) that capture the user’s attention and interests. For 
example, human-related objects, such as a human face, a 
flower, a house, or a text sentence, usually attract high 
attention. Humans view an image and adapt in a short time 
interval to a handful of attention objects. Thus, image 
adaptation is treated as a way of manipulating AOs to 
provide as much information as possible in the image. 

The attention model is generally classified into two 
categories: top-down approaches and bottom-up approaches. 
The first is task-driven, where prior knowledge of the target 
is known before the analysis or detection process. This is 
based on the cognition of the human brain [1]. For example, 
a bird is flying in the sky. The observer is already aware of 
the bird’s next action and anticipates the continuous flap of 

its wings. The second form of attention is the bottom-up 
approach, which is usually referred to as the stimuli-driven 
technique. This is based on human sensitivity to image 
features, such as the bright color, distinctive shape, or the 
orientation of objects. 

Some investigation of computational attention 
methodologies has been performed. Itti and Koch [2] have 
worked on computational models of visual attention and 
presented a bottom-up, saliency- or image-based visual 
attention system. By combining multiple image features 
into a single topographical saliency map, the locations that 
draw attention are detected in the order of decreasing 
saliency by a dynamical neural network [3]. The main 
parameters that are extracted from the attention system are 
low-level features such as color, intensity, and orientation. 
Other possible parameters are stereo disparity in stereo 
images and shape information. Each feature is computed 
by a set of linear center-surround operations using visual 
receptive fields, since visual neurons are typically most 
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Abstract 
An image attention model and its application to image quality assessment are discussed in this paper. The attention model is 
based on rarity quantification, which is related to self-information to attract the attention in an image. It is relatively simpler 
than the others but results in taking more consideration of global contrasts between a pixel and the whole image. The visual 
attention model is used to develop a local distortion predictor, named color visual differences predictor (CVDP), in color 
images in order to effectively detect luminance and color distortions. 
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sensitive in a small (center) region. Center-surround is 
modeled as the difference between a center fine scale and 
a surrounding coarser scale, yielding feature maps. The 
first set of feature maps is concerned with intensity 
contrast. The second set of maps is similarly constructed 
for color channels, which are represented by using the 
color double-opponent system. Neurons are excited by one 
color (e.g., red) and inhibited by another (e.g., green), 
while the converse is true in the surrounding area. The 
third set of maps is concerned with local orientation 
obtained by oriented Gabor pyramids [4]. A Gabor filter is 
a Gaussian kernel function modulated by a sinusoidal 
plane wave, approximating the human receptive field 
sensitivity of orientation-selective neurons in the primary 
visual cortex. Li et al. [5] developed upon Itti’s work by 
using a hierarchical architecture for saliency search on the 
basis of multi-scale saliency maps. 

Human visual system (HVS)-based quality assessment is 
implemented in two modeling approaches: single-channel 
models and multi-channel models. Single channel models 
regard the human visual system as a single spatial filter, 
whose characteristics are defined by the contrast sensitivity 
function (CSF). The input is filtered by the CSF model. A 
single-channel model is unable to cope with more complex 
properties in the HVS, such as adaptation and inter-channel 
masking. These can be explained quite successfully by a 
multi-channel model, which assumes a whole set of 
different channels instead of just one. Daly [6] proposed the 
visual differences predictor (VDP), a rather well-known 
image distortion metric. The underlying vision model 
includes amplitude nonlinearity to account for the 
adaptation of the visual system to different light levels, an 
orientation-dependent two-dimensional CSF, and a 
hierarchy of detection mechanisms. These mechanisms 
involve a decomposition process similar to the above-
mentioned cortex transform and a simple intra-channel 
masking function. The responses in the different channels 
are converted to detection probabilities by means of a 
psychometric function and finally combined according to 
the rules of probability summation. The resulting output of 
the VDP is a visibility map indicating the areas where two 
images differ in a perceptual sense. 

The remainder of the paper is organized as follows. The 
luminance VDP proposed by Daly [6] is extended to include 
color components and to detect color distortions in Section 
II. The concept of attention modeling based on entropy and 
inverse contrast is developed and proposed in Section III. In 
Section IV, simulation results for the proposed visual 
attention and color VDP (CVDP) based image assessment 
model are presented. Finally, Section V draws major 
concluding remarks.  

 
 

II. VISIBLE DISTORTION PREDICTOR 
 

A. Luminance VDP 
 

The VDP is a relative metric since it does not describe an 
absolute metric of image quality, but instead addresses the 
problem of describing the visibility of differences between 
two images. The VDP can be seen to consist of components 
for calibration of the input images, an HVS model, and a 
method for displaying the HVS predictions of the detectable 
differences. The input to the algorithm includes two images 
and parameters for viewing conditions and calibration, 
while the output is a third image describing the visible 
differences between them. Typically, one of the input 
images is a reference image, representing the image quality 
goal, while the other is a distorted image, representing the 
system’s actual quality. The block components outside of 
the VDP generically describe the simulation of the distortion 
under study. The VDP is used to assess the image fidelity of 
the distorted image as compared to the reference. Its output 
image is a map of the probability of detecting the 
differences between the two images as a function of their 
location in the images. This metric, probability of detection, 
provides an accurate description of the threshold behavior of 
vision, but does not discriminate between different 
suprathreshold visual errors. The VDP can therefore be 
summarized as a threshold model for suprathreshold 
imagery, capable of quantifying the important interactions 
between threshold differences and suprathreshold image 
content and structure. 

The HVS model addresses three main sensitivity variations. 
These are the variations as a function of light level, spatial 
frequency, and signal content. Sensitivity can be thought of as 
a gain, though the various nonlinearities of the visual system 
require caution in this analogy. The variations in sensitivity as 
a function of light level are primarily due to the light adaptive 
properties of the retina, and we shall refer to this overall effect 
as the amplitude nonlinearity of the HVS. The variations as a 
function of spatial frequency are due to the optics of the eye 
combined with the neural circuitry, and these combined 
effects are referred to as the CSF. Finally, the variations in 
sensitivity as a function of signal content are due to the post-
receptoral neural circuitry, and these effects are referred to as 
masking. The HVS model consists of three main components 
that essentially model each of these sensitivity variations. In 
the current state of development of the VDP, these three 
components are sequentially cascaded in the straightforward 
manner shown in Fig. 1. The first component is the amplitude 
nonlinearity, implemented as a point process, while the 
second is the CSF, implemented as a filtering process. The 
final component in the cascade is the detection process, which 
models the masking effects. It is implemented as a 
combination of filters and nonlinearities. 
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Fig. 1. The luminance visual differences predictor components. HVS: 
human visual system, 2D CSF: 2 dimensional contrast sensitivity function. 

 
 

B. Color VDP 
 

Color components are not as sensitive as luminance 
components. However, the image quality assessment has to 
describe the chromatic distortion that cannot be done by a 
luminance-based system. Thus, we designed an assessment 
system extended from Daly’s work, as shown in Fig. 2. 

For the spatial filtering of opponent channels, white-black 
(W-Bk), red-green (R-G), and blue-yellow (B-Ye), it is 
performed using a simple multiplication on a series of 
convolution. In order to filter the image, the opponent 
channels must be first transformed into their respective 
frequency representation using a discrete Fourier transform 
(DFT). Specifications of the contrast sensitivity functions 
are used for the general shape of the luminance and 
chrominance models, as defined by many researchers [6-8]. 
We use the spatial filters of the S-CIELAB model [9] that 
are designed to approximate the human contrast sensitivity 
function for the luminance component as given by:  

 
 ( ) c b f

lumaCSF f a f e− ⋅= ⋅  (1) 
 

where the parameters a, b, and c are 75, 0.2, and 0.8, 
respectively.  

For the chrominance channels, R-G and B-Ye, we use the 
chrominance CSF filters in Eq. (2), and they are also 
depicted in Fig. 3. The six parameters are empirically 
defined. 

 
 1 2

1 2
1 2( )

c cb f b f
chromaCSF f a e a e− ⋅ − ⋅= ⋅ + ⋅  (2) 

 
In digital imaging applications, spatial frequency in 

cycles per degree of the visual angle is a function of both 
addressability and viewing distance. For example, if a 
computer monitor is capable of displaying 72 pixels per inch 
(ppi) and is viewed at 18 inches, then there are roughly 23 
digital samples per degree of visual angle. The calculation is 
shown in Eq. (3) [10]. However, Johnson’s equation should 
be read in pels/deg instead of cycles/deg. 

 ( )11180
 [cyc/deg]

2 tan
s inch

viewing distance

ppif
π

−
=

⋅ ⋅
 (3) 

Since the Poison opponent color space was designed for 
pattern-color separability, it is useful for implementation of 
separate contrast sensitivity for each color channel. When 
applying the CSF to the opponent transformed data, spatial 
frequencies are calculated by Eq. (3). The luminance data 
and two color difference data are processed in parallel in the 
domain of the cortex transform with a reasonable parameter 
setting. 

 

 
Fig. 2. Proposed color visual differences predictor block diagram. CSF: contrast sensitivity function, W: white, Bk: black, B: blue, R: red, G: green, Ye: yellow. 



Visible Distortion Predictors Based on Visual Attention in Color Images 

http://jicce.org 303

 

Fig. 3. Contrast sensitivity function for the opponent channels. W: white, 
Bk: black, B: blue, R: red, G: green, Ye: yellow. 

 
 

III. VISUAL ATTENTION MODELING 
 

A. Attention Modeling Based on Entropy and 
Inverse Contrast 

 
It is believed that visual attention is not driven by a 

specific feature that has dedicated low-level properties that 
can be treated by the HVS-based assessment. Visual 
attraction can be induced by either heterogeneous or 
homogeneous, dark or bright, symmetric or asymmetric 
objects [11], which is determined by higher level processing 
than the existing HVS-based system. It can be assumed that 
image information that is rare in the image, such as high 
frequency areas or higher contrast areas, will draw more 
attention. Thus, visual attention may be ascertained by 
modeling and quantifying the rarity of image information, 
called entropy [12]. 

It is well-known that self-information is a function of 
probability of a symbol. Larger probability gives lower self-
information by taking a logarithm as 

 
 ( ) log( ( ))i iI m p m= −  (4) 
 

where )( imp  denotes the probability of a message, 
Gimi ≤≤0, . In image processing, the probability density 

function can be estimated by the histogram that shows the 
distribution of probabilities of all image levels. 

A pixel is conspicuous if its gray level is significantly 
different from the neighboring pixel value. The larger the 
difference between the two levels, the higher the saliency 
that it represents. Thus, the saliency value of a level 
intensity , 0kI k G≤ ≤ can be calculated from a contrast 
map that is constructed prior to the saliency map 
computation [1]. The maximum intensity G  is chosen as 
255 in this work. For an image of size MN × , the global 
contrast value of kI  is defined as 

 
1 1

( , )1( )
( , )

N M
k

k
n m

I I m n
C I

N M I m n= =

−
=

× ∑∑  (5) 

where ),( nmI denotes the intensity value at pixel location 
(m, n) in an image in the range [0, G]. While the global 
contrast dominates over the whole image, the inverse 
contrast [13] is defined as the reciprocal of )( kIC , 
 

 ( ) 1 / ( ).I k kC I C I=  (6) 
 

The histogram of a digital image with 1+G total 
possible intensity levels is defined as the discrete function 

 
 ( )k kH I n=  (7) 

 
where kn  is the number of pixels in the image whose 
intensity level is kI . The histogram affecting the attention 
probability is multiplied by the inverse contrast, resulting in 
the combined probability of the message as shown by 

 
 ( ( , )) ( ( , ) ( ( , ))Ip I m n H I m n C I m n= ×  (8) 
 

where ),( nmH and )),(( nmICI  denote the histogram 
and the inverse contrast of the intensity level at the pixel 
location (m, n), respectively. Then, the visual attention is 
obtained by logarithmic operation as 

 

 ( , ) log( ( ( , )).A m n p I m n= −  (9) 
 

If a message is very different from all the others, 
)),(( nmICI  will be low so that the occurrence 

)),(( nmIp  will be lower and the message attention will be 
higher. Thus, instead of computing the saliency values of all 
the image pixels, only the saliency values of the intensity 
levels are necessary for the generation of the final saliency 
map. One example of the pixel-level spatial saliency 
computation is shown in Fig. 4. 

 
 

 
Fig. 4. Relative value of visual attention (right) for Y component of ‘caps’ 
image (left). 
 
 

The left and right portions of Fig. 4 show, respectively, 
the luminance component of the input image and the 
resulting spatial saliency values, compared with image 
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histogram and global inverse contrast. Note that the scales 
for three plots are adjusted to represent them on a graph. 
The lowest saliency is found in the range of frequent 
occurrences and high global inverse contrast. The saliency 
values are close to what a human would expect because 
higher occurrence indicates redundant information in the 
image, which is, therefore, relatively unattractive 
(unattended). 

The output saliency map shows some important objects 
obtained by a relatively simple algorithm. However, there 
may be too many salient objects in the complex images 
since the map is based on the histogram method. It does not 
distinguish the semantic meaning of the pixels, size or shape 
of objects, or texture information. In spite of these 
limitations, it is still useful for detecting the most salient 
pixels, which correspond to the pixels of visual attention. 

 
B. Attention-based CVDP Modeling 
 

The CVDP utilizes luminance and color responses in 
HVS and spatial frequency channel sensitivities. However, 
attention is focused on certain areas of an image that can be 
modeled by information theory rather than amplitude or 
frequency responses. Both attention and CVDP systems can 
be merged in serial or parallel connection. Fig. 5 shows a 
parallel combination in which visual attention results are 
weighted to a CVDP map to derive a final visible distortion 
map. 

 
 

 
Fig. 5. Proposed attention-based color visual differences predictor (CVDP) 
quality metric overview. 

 

 

IV. SIMULATION RESULTS 
 
The purpose of visual attention is to determine which 

objects are the most interesting to the human eye at the 
moment. However, it is not always object-based. Some 
regions are most attractive depending on image properties. 
Itti’s model works well for simple images like Fig. 6, which 
includes only two aircraft objects. Conspicuity maps for 
intensity, color, and orientation are separately drawn by 
considering relevant features. The final saliency map is 
obtained by combining the three conspicuity maps. 
However the test image contains only two significant 

objects, that is, it is so simple. If the complexity of an image 
increases, Itti’s model does not provide meaningful results 
as shown in Fig. 7, which contains five cap objects. 
Although the human eye would be expected to latch on to 
one or more of the caps that are most attractive, the cap 
objects are hardly discernible in the final saliency map. 

 
 

 

Fig. 6. Saliency map of Itti model: aircrafts image (top left), color 
conspicuity map (CM, top center), intensity CM (top right), orientation CM 
(bottom left), and saliency map (bottom right). 
 
 

 

Fig. 7. Saliency map of Itti model: caps image (top left), color conspicuity 
map (CM, top center), intensity CM (top right), orientation CM (bottom left), 
and saliency map (bottom right).   
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Performance of the proposed attention-based CVDP 
(ACVDP) scheme is shown in Fig. 8, presenting an original 
image, CVDP perception map, and attention map obtained 
by rarity quantified modeling, and the final ACVDP result. 
It is worth noting that there are some clouds in the top-right 
part of the distorted “caps” image that draw quite high 
attention, but distortions existing inside are not detectable in 
terms of human sensitivity. On the other hand, the shadow 
areas below the caps do not draw much attention, but 
distortions are quite detectable. This means the two different 
approaches should be closely related to obtain optimum 
performance. 
 

 

 

Fig. 8. Attention-based color visual differences predictor (CVDP) results: 
distorted image of caps (top left), CVDP perception map (top right), proposed 
attention map (bottom left), and perception map by combining the attention 
and CVDP maps (bottom right). 

 
 

V. CONCLUSIONS 
 
Image attention models and their application to image 

quality assessment were discussed. First, the luminance 
VDP developed by Daly was extended to cover color 
responses. Color distortions are detected by CVDP. Next, 
we reviewed the well-organized Itti’s model for image 
attention modeling. Three parameters, intensity, color, and 
orientation, are used to generate a saliency map in a 
hierarchical structure and center-surround technique. Our 
attention model is based on rarity quantification, which is 
related to self-information or entropy in information theory. 
It is based on the fact that more important things are rare. 
The algorithm is relatively simpler than Itti’s model but 
results in more consideration of global contrasts from a 
pixel to a whole image. 

The two human eye-related schemes are combined to 
obtain a more efficient image quality assessment algorithm. 
The results show that objects that are important in view of 
one scheme are not really important from the perspective of 
another scheme. Therefore, the two schemes should be used 
to compensate for each other. 
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