• 제목/요약/키워드: self-assembled

검색결과 756건 처리시간 0.021초

Glucose Sensors Using Lipoic Acid Self-Assembled Monolayers

  • Kim, Ji Yeong;Nakayama, Tadachika;Kim, Jae-Hun;Kim, Sang Sub
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.295-298
    • /
    • 2014
  • A novel approach to fabricating high-performance glucose sensors is reported, which is based on the process of self-assembled monolayers (SAMs). In this study, we have particularly used ${\alpha}$-lipoic acid (LA) SAMs for the glucose sensors. To our best knowledge, this study is the first one to use LA as SAMs for this purpose. N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were deliberately attached at the same time on the LA SAM. Then, glucose oxidase ($GO_X$) and horseradish peroxidase (HRP) were sequentially immobilized. Thus, the HRP/$GO_X$/NHS-EDC/LA-SAM/Au/Cr/glass working electrode was developed. The glucose-sensing capability of the fabricated sensor was systematically measured by the use of cyclic voltammetry in the range of 1-30 mM glucose in phosphate-buffered saline. The result showed a good sensitivity, that is, as high as $27.5{\mu}A/(mM{\cdot}cm^2)$. This result conspicuously demonstrates that LA can be one of promising substances for use as SAMs for accurately monitoring trace levels of glucose concentration in human blood.

혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성 (Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

Formation and Annealing Effect of Tolanethioacetate Self-Assembled Monolayers on Au(111)

  • Jeong, Young-Do;Han, Jin-Wook;Kim, Nak-Joong;Lee, Young-Il;Lee, Chang-Jin;Hara, Masahiko;Noh, Jaeg-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2445-2448
    • /
    • 2007
  • Self-assembled monolayers (SAMs) were formed by adsorption of thioacetyl-terminated tolanethioacetate (TTA) on Au(111) in a 0.5-mM ethanol solution after one day immersion at room temperature. Molecular-scale STM imaging revealed that the TTA SAMs were composed of two mixed phases; an ordered phase with small domains describing a ( × 2 )R30° structure and a disordered phase. Interestingly, after annealing the precovered TTA SAMs on Au(111) at 90 °C for 1 h, the small ordered domains grew unidirectionally, resulting in the formation of unique rod-like domains, which were assigned a ( × 2 )R7° structure. These results will be very useful in understanding the formation and thermal behavior of TTA SAMs on gold surfaces.

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

STM에 의한 Dipyridinium 유기분자의 전압-전류 특성 연구 (A Study on the Current-voltage Properties of Dipyridinium Molecule using Scanning Tunneling Microscopy)

  • 이남석;신훈규;장정수;권영수
    • 한국전기전자재료학회논문지
    • /
    • 제18권7호
    • /
    • pp.622-627
    • /
    • 2005
  • In this study, electrical properties of self-assembled dipyridinium dithioacetate molecule onto the Au(111) substrate is observed using Scanning Tunneling Microscopy(STM) by vortical structure of STM probe. At first, the Au(111) substrate is cleaned by piranha solution$(H_2SO_4:H_2O_2\;=\;3:1)$. Subsequently, 1 mM/ml of dipyridinium dithioacetate molecule is self-assembled onto the Au(111) surface. Using STM, the images of dipyridinium dithioacetate molecule which is self-assembled onto the Au(111) substrate, can be observed. In addition, the electrical properties(I-V) of dipyridinium dithioacetate can also be examined by using Scanning Tunneling Spectroscopy(STS). From the results of the measurement of the current-voltage(I-V), the property of Negative Differential Resistance(NDR) that shows the decreases of current according to the increases of voltage is observed. We found the NDR voltage of the dipyridinium dithioacetate is -1.42 V(negative region) and 1.30 V(positive region), respectively.

혼합 Self-assembled monolayer의 마이크로/나노 응착 및 마찰 특성 (Micro/nano adhesion and friction properties of mixed self-assembled monolayer)

  • 오현진;윤의성;한흥구;공호성;장경영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.56-63
    • /
    • 2003
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water wetting angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that wetting angles of mixed SAMs showed the similar value of pure SAMs. The coating surface morphology was increased as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

  • PDF

나노성형 공정 조건이 자기조립 단분자막의 이형 특성에 미치는 영향 (The Effect of Process Condition in Nano-molding on the Property of SAM (self-assembled monolayer))

  • 이남석;한정원;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 2005
  • In this study, SAM (self-assembled monolayer) was applied as an anti-adhesion layer in the nano molding process, to reduce the surface energy between the nano-stamper and the moldeded polymeric nano patterns. Before depositing SAM on the stamper, the nickel stamper was pretreated to remove oxide on the nickel stamper surface. Then, using the solution deposition method, alkanethiol SAM as an anti-adhesion layer was deposited on nickel surface. To examine the effectiveness of the SAM deposition on the metallic nano stamper, the contact angle and the lateral friction force were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. The surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the high hydrophobic quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

표면개질된 금 전극의 일함수 조절을 통한 고성능 유기박막 트랜지스터 개발 (Control of the Gold Electrode Work Function for High Performance Organic Thin Film Transistors)

  • 박영돈
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.289-292
    • /
    • 2012
  • 용액공정이 가능한 저분자 유기반도체, triethylsilylethynyl anthradithiophene (TES ADT)을 기반으로 한 유기박막 트랜지스터에서 금 전극의 일함수를 제어하기 위해 표면을 자기조립 단분자막(self-assembled monolayers, SAMs)으로 개질하였다. Benzothiol (BT)과 pentafluorobenzothiol (PFBT) 자기조립 단분자막을 이용해 금 전극의 일함수를 조절하고 이를 통해 TES ADT의 HOMO 준위에 대한 정공주입장벽을 최소화 하고자 하였다. 또한, solvent annealing 후처리 공정을 통해 TES ADT 박막의 결정성을 향상시켰고, 이를 PFBT로 개질된 금 전극을 기반으로 한 유기박막 트랜지스터에 적용한 경우 $0.05\;cm^2/Vs$의 높은 전계효과 이동도와 $10^6$의 높은 점멸비를 보고하였다.

Hyperthermal Collision-induced Dissociation of Bromotoluene Radical Cations at Self-Assembled Monolayer Surfaces

  • Jo, Sung-Chan;Augusti, Rodinei;Cooks, R. Graham
    • Mass Spectrometry Letters
    • /
    • 제2권1호
    • /
    • pp.24-27
    • /
    • 2011
  • Hyperthermal ion/surface collisions of bromotoluene radical cations were studied using perfluorinated (F-SAM) and hydroxyl-terminated (OH-SAM) self-assembled monolayer surfaces in a tandem mass spectrometer with BEEQ geometry. The isomers were differentiated by ion abundance ratios taken from surface-induced dissociation (SID). The dissociation rate followed the order of ortho > meta > para isomers. The peak abundance ratio of m/z 51 to m/z 65 showed the best result to discern the isomers. A dissociation channel leading to tolylium ion was suggested to be responsible for the pronounced isomeric differences. The capability of SID to provide high-energy activation with narrow internal energy distribution may have channeled the reaction into the specific dissociation pathway, also facilitating small differences in reaction rates to be effective in the spectral time window of this experiment. All of the molecular ions experiencing reactive collisions with the F-SAM surface undergo transhalogenation, in which a fluorine atom on the surface replaces the bromine in the incoming ions. This reactive collision was dependent on the laboratory collision energy occurring in ca. 40.75 eV range.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • 김성수
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.