• Title/Summary/Keyword: self recurrent wavelet neural network

Search Result 23, Processing Time 0.03 seconds

Self-Recurrent Neural Network Based Sliding Mode Control of Biped Robot (이족 로봇을 위한 자기 회귀 신경 회로망 기반 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1860-1861
    • /
    • 2006
  • In this paper, we design a robust controller of biped robot system with uncertainties, using recurrent neural network. In our proposed control system, we use the self-recurrent wavelet neural network (SRWNN). The SRWNN makes up for the weak points in wavelet neural network(WNN). While the WNN has fast convergence ability, it dose not have a memory. So the WNN cannot confront unexpected change of the system. However, the SRWNN, having advantage of WNN such as fast convergence, can easily encounter the unexpected change of the system. For stable walking control of biped robot, we use sliding mode control (SMC). Here, uncertainties are predicted by SRWNN. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out computer simulations with a biped robot model to verify the effectiveness of the proposed control system,.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Robust Control of the Robotic Systems Using Self Recurrent Wavelet Neural Network via Backstepping Design Technique (벡스테핑 기법 기반 자기 회귀 웨이블릿 신경 회로망을 이용한 로봇 시스템의 강인 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2711-2713
    • /
    • 2005
  • This paper presents the tracking control method of robotic systems with uncertainties using self recurrent wavelet neural network (SRWNN) via the backstepping design technique. The SRWNN is used as the uncertainty observer of the robotic systems. The adaptation laws for weights of the robotic systems are induced from the Lyapunov stability theorem, which are used for on-line controlling robotic systems. Computer simulations of a three-link robot manipulator with uncertainties verify the validity of the proposed SRWNN controller.

  • PDF

Intelligent Gain and Boundary Layer Based Sliding Mode Control for Robotic Systems with Unknown Uncertainties

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2319-2324
    • /
    • 2005
  • This paper proposes a intelligent gain and boundary layer based sliding mode control (SMC) method for robotic systems with unknown model uncertainties. For intelligent gain and boundary layer, we employ the self recurrent wavelet neural network (SRWNN) which has the properties such as a simple structure and fast convergence. In our control structure, the SRWNNs are used for estimating the width of boundary layer, uncertainty bound, and nonlinear terms of robotic systems. The adaptation laws for all parameters of SRWNNs and reconstruction error bounds are derived from the Lyapunov stability theorem, which are used for an on-line control of robotic systems with unknown uncertainties. Accordingly, the proposed method can overcome the chattering phenomena in the control effort and has the robustness regardless of unknown uncertainties. Finally, simulation results for the three-link manipulator, one of the robotic systems, are included to illustrate the effectiveness of the proposed method.

  • PDF

Self-Recurrent Wavelet Neural Network Observer Based Sliding Mode Control for Nonlinear Systems (자기 회귀 웨이블릿 신경 회로망 관측기 기반 비선형 시스템의 슬라이딩 모드 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2236-2238
    • /
    • 2004
  • This paper proposes the self-recurrent wavelet neural network (SRWNN) observer based sliding mode control (SMC) method for nonlinear systems. Unlike the classical SMC, we assume that all states of nonlinear systems are not measured and design the SRWNN observer to measure the states of nonlinear systems. The SRWNN in the observer is used for approximating the observer system's gain. To generate the control input for controlling the nonlinear system, the measured states are used. The sliding surface with a boundary layer is defined to remove the chattering of the control input. Simulation result to show the effectiveness of the SRWNN observer is presented.

  • PDF

A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구)

  • Kim, Byung-Soo;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF

Robust Control of Planar Biped Robots in Single Support Phase Using Intelligent Adaptive Backstepping Technique

  • Yoo, Sung-Jin;Park, Jin-Rae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • This paper presents a robust control method via the intelligent adaptive backstepping design technique for stable walking of nine-link biped robots with unknown model uncertainties and external disturbances. In our control structure, the self recurrent wavelet neural network(SRWNN) which has the information storage ability is used to observe the uncertainties of the biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Also, we prove that all signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer simulations of a nine-link biped robot with model uncertainties and external disturbances, we illustrate the effectiveness of the proposed control system.

Adaptive Neural Dynamic Surface Control via H Approach for Nonlinear Flight Systems (비선형 비행 시스템을 위한 H 접근법 기반 적응 신경망 동적 표면 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.254-262
    • /
    • 2008
  • In this paper, we propose an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for full dynamics of nonlinear flight systems. It is assumed that the model uncertainties such as structured and unstrutured uncertainties, and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate the model uncertainties of nonlinear flight systems, and an adaptive DSC technique is extended for the disturbance attenuation of nonlinear flight systems. All weights of SRWNNs are trained on-line by the smooth projection algorithm. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance nom external disturbances can be obtained. Finally, we present the simulation results for a nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoon, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1848-1849
    • /
    • 2006
  • The new robust controller design method is proposed for the flight control systems with model uncertainties. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the "explosion of complexity" problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

  • PDF