• 제목/요약/키워드: self organizing neural network

검색결과 222건 처리시간 0.027초

SOFM신경망과 C4.5를 활용한 강의품질 개선 (Improving Lecture Quality using SOFM neural network and C4.5)

  • 이장희
    • 실천공학교육논문지
    • /
    • 제6권2호
    • /
    • pp.71-76
    • /
    • 2014
  • 대학, 기업 및 학원에서 제공하는 교육 서비스의 질을 향상하기 위해서는 주요 활동인 강의의 품질 개선이 필수적이다. 강의 수행 후 수강생에 의해서 평가되는 강의평가 설문 데이터는 강의 품질을 측정하고 개선할 수 있는 좋은 도구로서, 대부분 간단한 통계분석을 통해 처리되고 있다. 본 연구는 강의평가 설문 데이터를 SOFM (Self-Organizing Feature Map) 신경망과 C4.5와 같은 분석도구를 사용하여 분석함으로써 수강생의 만족도와 강의 성과 관련한 특징을 보다 정확하게 파악하고 개선이 필요한 강의 품질 요소를 구체적으로 도출하여 강의 품질을 효율적으로 개선할 수 있는 방안을 제시하였다. 본 연구에서 제시한 방안을 국내 기업의 사내 강의에 적용한 결과, 만족도와 강의 성과 관점에서 미흡한 3개의 수강생 그룹에서 개선이 필요한 총 강의시간, 강의 자료, 강의 시간표 구성 요소를 개선하여 강의 품질이 향상되는 것을 확인하였다.

신경망을 사용한 사상체질 진단검사 개발 연구 (Development of Sasang Type Diagnostic Test with Neural Network)

  • 채한;황상문;엄일규;김병철;김영인;김병주;권영규
    • 동의생리병리학회지
    • /
    • 제23권4호
    • /
    • pp.765-771
    • /
    • 2009
  • The medical informatics for clustering Sasang types with collected clinical data is important for the personalized medicine, but it has not been thoroughly studied yet. The purpose of this study was to examine the usefulness of neural network data mining algorithm for traditional Korean medicine. We used Kohonen neural network, the Self-Organizing Map (SOM), for the analysis of biomedical information following data pre-processing and calculated the validity index as percentage correctly predicted and type-specific sensitivity. We can extract 12 data fields from 30 after data pre-processing with correlation analysis and latent functional relationship analysis. The profile of Myers-Briggs Type Inidcator and Bio-Impedance Analysis data which are clustered with SOM was similar to that of original measurements. The percentage correctly predicted was 56%, and sensitivity for So-Yang, Tae-Eum and So-Eum type were 56%, 48%, and 61%, respectively. This study showed that the neural network algorithm for clustering Sasang types based on clinical data is useful for the sasang type diagnostic test itself. We discussed the importance of data pre-processing and clustering algorithm for the validity of medical devices in traditional Korean medicine.

Hybrid Fuzzy Neural Networks by Means of Information Granulation and Genetic Optimization and Its Application to Software Process

  • Park, Byoung-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권2호
    • /
    • pp.132-137
    • /
    • 2007
  • Experimental software data capturing the essence of software projects (expressed e.g., in terms of their complexity and development time) have been a subject of intensive modeling. In this study, we introduce a new category of Hybrid Fuzzy Neural Networks (gHFNN) and discuss their comprehensive design methodology. The gHFNN architecture results from highly synergistic linkages between Fuzzy Neural Networks (FNN) and Polynomial Neural Networks (PNN). We develop a rule-based model consisting of a number of "if-then" statements whose antecedents are formed in the input space and linked with the consequents (conclusion pats) formed in the output space. In this framework, FNNs contribute to the formation of the premise part of the overall network structure of the gHFNN. The consequences of the rules are designed with the aid of genetically endowed PNNs. The experiments reported in this study deal with well-known software data such as the NASA dataset. In comparison with the previously discussed approaches, the proposed self-organizing networks are more accurate and yield significant generalization abilities.

하이브리드 인공신경망 모형을 이용한 부도 유형 예측 (Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model)

  • 조남옥;김현정;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.79-99
    • /
    • 2015
  • 부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.

다공질 압전 초음파 트랜스튜서를 이용한 3차원 수중 물체인식 (3-D Underwater Object Recognition Using Ultrasonic Transducer Fabricated with Porous Piezoelectric Resonator)

  • 조현철;이수호;박정학;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.316-319
    • /
    • 1996
  • In this study, characteristics of ultrasonic transducer fabricated with porous piezoelectric resonator are investigated, 3-D underwater object recognition using the self-made ultrasonic transducer and SOFM(Self-Organizing Feature Map) neural network are presented. The self-made transducer was satisfied the required condition of ultrasonic transducer in water, and the recognition rates for the training data and the testing data were 100 and 95.3% respectively. The experimental results have shown that the ultrasonic transducer fabricated with porous piezoelectric resonator could be applied for sonar system.

  • PDF

조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발 (Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding)

  • 이경호;양영순;오준;박종훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

패턴인식을 위한 자율조직망의 적용가능성에 관한 연구 (A Study on the Feasibility of Self-Organizing Net for the Pattern Recognition)

  • 정은호;김진구
    • 한국통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.403-412
    • /
    • 1991
  • 본 논문에서는 숫자, 영문자및 임의의 도형을 인식할 수 있는 자율조직 신경회로망의 한 형태를 제안하였다. 제안된 알고리즘은 미리 정해진 규칙을 부여하지 않아도 입력화상에 좋재하는 특징점의 분포 형태에 따라 시스템 내부에서 자율적으로 유사패턴을 조직, 분류하게 된다. 따라서 학습의 규칙을 만들기 곤란한 임의도형의 인식을 위해 적절하게 이용될 수 있으며, 기억용량의 한계까지는 안정된 인식동작을 한다. 또한 본 알고리즘을 50개 회상패턴에 적용하여 노이즈의 증가에 대한 인식능력을 측정한 결과, 최대 44% 의 노이즈 (SNR 2dB)로 인해 변형된 형태에서도 인식이 가능함으로서 양호한 내잡음특성이 입증되었다.

  • PDF

자기조직화 지도를 이용한 이중언어사전 자동 구축 (Bilingual Lexicon Extraction Using Self-Organizing Maps)

  • 서형원;천민아;김재훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.802-805
    • /
    • 2015
  • 본 논문은 인공신경망(artificial neural network)의 한 종류인 자기조직화 지도(self-organizing map)를 이용하여 비교말뭉치(comparable corpora)로부터 이중언어사전(bilingual lexicon)을 자동으로 구축하는 방법에 대하여 기술한다. 일반적으로 우리가 대상으로 하는 언어 쌍마다 말뭉치 혹은 초기사전과 같은 언어 자원을 수집하고 그것을 필요에 맞게 가공하는 것은 매우 어려운 일이다. 이런 관점에서 볼 때, 비지도학습(unsupervised learning) 방법 중 하나인 자기조직화 지도를 이용하여 사전을 구축하면 다른 방법에 비해 적은 노력으로도 더 높은 성능을 얻을 수 있다. 본 논문에서는 한국어와 불어에 대하여 실험을 하였고, 그 결과 적은 양의 초기사전으로도 주목할 만한 정확도를 얻을 수 있었다. 향후 연구로는 학습 파라미터에 대해 좀 더 다양한 실험을 하고, 다른 언어 쌍으로의 적용 및 기존의 평가사전을 확장하여 더 많은 경우에 대해 실험하는 것을 들 수 있다.

신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘 (Pattern Classification Algorithm of DNA Chip Image using ANN)

  • 주종태;김대욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.556-561
    • /
    • 2006
  • DNA칩 영상의 패턴 분류는 인간의 유전적 질병에 대한 유용한 정보를 획득할 수 있다는 점에서 아주 중요한 것이다. 본 논문에서는 DNA칩 영상의 패턴을 분류하기 위해 신경망의 학습 알고리즘 중 Back-propagation과 Self Organizing Map을 이용하여 패턴을 분류하는 알고리즘을 개발하고 이들의 결과를 비교 분석하였다. 또한 개발한 알고리즘은 PC 환경 및 S3C2440 (ARM920T)을 CPU Core로 사용한 MV2440 보드에서 실험하여 그 결과를 디스플레이 함으로써 사용자가 다양한 환경에서 보다 쉽게 유전자 정보를 얻는데 도움을 줄 수 있도록 하였다.