Development of Sasang Type Diagnostic Test with Neural Network

신경망을 사용한 사상체질 진단검사 개발 연구

  • Chae, Han (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Hwang, Sang-Moon (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Eom, Il-Kyu (School of Korean Medicine, Pusan National University) ;
  • Kim, Byoung-Chul (Department of Biomedical Engineering, College of Natural Resource and Life Science, Pusan National University) ;
  • Kim, Young-In (Department of Biomedical Engineering, College of Natural Resource and Life Science, Pusan National University) ;
  • Kim, Byung-Joo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Kwon, Young-Kyu (Division of Longevity and Biofunctional School of Electrical Engineering, Pusan National University)
  • 채한 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 황상문 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 엄일규 (부산대학교 전자전기공학부) ;
  • 김병철 (부산대학교 생명자원과학대학 바이오메디컬공학과) ;
  • 김영인 (부산대학교 생명자원과학대학 바이오메디컬공학과) ;
  • 김병주 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 권영규 (부산대학교 한의학전문대학원 양생기능의학부)
  • Published : 2009.08.25

Abstract

The medical informatics for clustering Sasang types with collected clinical data is important for the personalized medicine, but it has not been thoroughly studied yet. The purpose of this study was to examine the usefulness of neural network data mining algorithm for traditional Korean medicine. We used Kohonen neural network, the Self-Organizing Map (SOM), for the analysis of biomedical information following data pre-processing and calculated the validity index as percentage correctly predicted and type-specific sensitivity. We can extract 12 data fields from 30 after data pre-processing with correlation analysis and latent functional relationship analysis. The profile of Myers-Briggs Type Inidcator and Bio-Impedance Analysis data which are clustered with SOM was similar to that of original measurements. The percentage correctly predicted was 56%, and sensitivity for So-Yang, Tae-Eum and So-Eum type were 56%, 48%, and 61%, respectively. This study showed that the neural network algorithm for clustering Sasang types based on clinical data is useful for the sasang type diagnostic test itself. We discussed the importance of data pre-processing and clustering algorithm for the validity of medical devices in traditional Korean medicine.

Keywords

References

  1. 이수진, 박수현, 고유선, 박수진, 엄일규, 김병철, 김영인, 백진웅, 김명근, 권영규, 채한. 임피던스 분석을 활용한 사상인의 신체계측 연구. 동의생리병리학회지 23(2):433-437, 2009
  2. 이수진, 김명근, 채한. 사상체질 진단검사 타당성분석에 대한 연구. 대한한의학회지 29(1):7-14, 2008
  3. 채한, 박수잔, 이수진, 고광찬. 사상 유형학의 성격심리학적 고찰. 대한한의학회지 25(2):151-164, 2004
  4. 김규곤, 최승배. 한의학에서의 사상체질판별함수 개발에 관한 연구 (I) -크론박 알파 계수에 의한 변수선택- Proceedings of Joint Conference of Korean Data And Information Science Society and The Korean Data Analysis Society, April 30-May1, pp 61-68, 2004
  5. 김규곤, 조민형. 한의학에서의 사상체질판별함수 개발에 관한 연구(II) -도수분석에 의한 변수선택- Proceedings of Joint Conference of Korean Data And Information Science Society and The Korean Data Analysis Society, April 30-May1, pp 69-77, 2004.
  6. 박성식, 최재영. 의사결정나무법을 이용한 설문지의 응답특성에 대한 임상적 검토. 사상체질의학회지 15(3):177-186, 2003
  7. Aviva, Petrie. Caroline Sabin. Medical Statistics at a Glance. 2nd Ed. Wiley-Blackwell. 2005
  8. 박은경, 이영섭. 박성식. 의사결정나무법을 이용한 체질진단에 관한 연구. 13(2):144-155, 2001
  9. 진희정, 문진석, 고성호, 구임회, 이시우, 이도현, 송미영, 김종열. 사상체질 의사결정시스템 구축을 위한 체질 진단 자료를 이용한 예비연구. 한국한의학연구원논문집 13(2):75-81, 2007
  10. Teuvo, Kohonen. Self-Organizing Maps. Springer-Verlag.1997
  11. Savova, G.K., Ogren, P.V., Duffy, P.H., Buntrock, D.J., Chute, C.G. Mayo clinic NLP system for patient smoking status identification. Journal of the American Medical Informatics Association. 15(1):25-28, 2008 https://doi.org/10.1197/jamia.M2437
  12. Qian Zhang, Ki Jung Lee, Taeg Keun, Whang bo. K-mean and double cross-validation algorithm for LS-SVM in Sasang typology classification. Proceedings of the IEEE International Conference on Automation and Logistics. August 18-21, Jinan, China. pp 426-430, 2007 https://doi.org/10.1109/ICAL.2007.4338600
  13. Petrova, N.V., Wu, C.H. Prediction of catalytic residuesusing Support Vector Machine with selected proteinsequence and sturctural properties. BMC Bioinformatics 7:312, 2006 https://doi.org/10.1186/1471-2105-7-312
  14. Chae, H., et al. An alternative way to individualizedmedicine: psychological and physical traits of Sasangtypology. Journal of Alternative and ComplementaryMedicine. 9(4):519-528, 2003 https://doi.org/10.1089/107555303322284811
  15. 김선호, 고병희, 송일병. 사상체질분류검사지(QSCCII)의 표준화 연구. 사상의학회지 7(1):187-246, 1995
  16. 이용구, 이윤수. 데이터마이닝에서 코호넨네트워크와 전통적군집분석 방법의 비교 연구. 수학 통계논문집, 7: 17-29, 2000
  17. 조동욱. 음성 신호 분석에 의한 사상 체질 분류. 한국통신학회논문지, 31(5C):548-555, 2006
  18. 이의주, 송광빈, 최환수, 유정희, 곽창규, 손은혜, 고병희. 음성분석에 의한 체질진단에 관한 연구. 대한한의학회지 26(1):93-102, 2005
  19. 최정락, 최재영, 이영섭, 박성식. 태음인 수면의 임상적 특징(로지스틱 회귀분석을 이용하여). 사상체질의학회지 16(3):18-24, 2004
  20. 김대윤, 이재원. 사상의학 체질진단 객관화에 대한 통계적 연구. Proceedings of the spring conference, Korean Statistical Society. pp 228-233, 1999