• Title/Summary/Keyword: self organizing neural network

Search Result 222, Processing Time 0.033 seconds

Prediction of Cutting Force using Neural Network and Design of Experiments (신경망과 실험계획법을 이용한 절삭력 예측)

  • 이영문;최봉환;송태성;김선일;이동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

Short-term load forecasting using Kohonen neural network and wavelet transform (코호넨 신경회로망과 웨이브릿 변환을 이용한 단기부하예측)

  • Kim, Chang-Il;Kim, Bong-Tae;Kim, Woo-Hyun;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.239-241
    • /
    • 1999
  • This paper proposes a novel wavelet transform and Kohonen neural network based technique for short-time load forecasting of power systems. Firstly. Kohonen Self-organizing map(KSOM) is applied to classify the loads and then the Daubechies D2, D4 and D10 wavelet transforms are adopted in order to forecast the short-term loads. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of Kohonen neural network and wavelet transform approach can be used as an attractive and effective means for short-term load forecasting.

  • PDF

Design of Intelligent Material Quality Control System based on Pattern Analysis using Artificial Neural Network (인공 신경망의 패턴분석에 근거한 지능적 부품품질 관리시스템의 설계)

  • 이장희;유성진;박상찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.4
    • /
    • pp.38-53
    • /
    • 2001
  • In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.

  • PDF

Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm (PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어)

  • Jung, Dong-Yean;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Study on the Load Frequency of 2-Area Power System Using Neural Network Controller (신경회로망 제어기을 이용한 2지역 전력계통의 부하주파수제어에 관한 연구)

  • Chong, H.H.;Lee, J.T.;Kim, S.H.;Joo, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.768-770
    • /
    • 1996
  • This paper propose neural network which is one of self-organizing techniques. It is composed neural network controller as input signal is error and change of error which is optimal output, and is learned system by using a error back-propagation learning algorithm is one of error mimizing learning methods. In order to achieve practical real time control reduce on learning time, it is applied to load-frequency control of nonlinear power system with using a moment learning method. It is described in such a case considering constraints for a rate of increace generation-rate.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Power System Security Assessment Using The Neural Networks (신경회로망을 이용한 전력계통 안전성 평가 연구)

  • Lee, Kwang-Ho;Hwang, Seuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1130-1132
    • /
    • 1997
  • This paper proposed an application of artificial neural networks to security assessment(SA) in power system. The SA is a important factor in power system operation, but conventional techniques have not achieved the desired speed and accuracy. Since the SA problem involves classification, pattern recognition, prediction, and fast solution, it is well suited for Kohonen neural network application. Self organizing feature map(SOFM) algorithm in this paper provides two dimensional multi maps. The evaluation of this map reveals the significant security features in power system. Multi maps of multi prototype states are proposed for enhancing the versatility of SOFM neural network to various operating state.

  • PDF

3-D Underwater Object Recognition Using PZT-Epoxy 3-3 Type Composite Ultrasonic Transducers (PZT-에폭시 3-3형 복합압전체 초음파 트랜스듀서를 사용한 3차원 수중 물체인식)

  • Cho, Hyun-Chul;Heo, Jin;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.286-294
    • /
    • 2001
  • In this study, 3-D underwater object recognition using the self-made 3-3 type composite ultrasonic transducer and modified SOFM(Self Organizing Feature Map) neural network are investigated. Properties of the self-made 3-3 type composite specimens are satisfied considerably with requirements as an underwater ultrasonic transducer's materials. 3-D underwater all object's recognition rates obtained from both the training data and testing data in different objects, such as a rectangular block, regular triangular block, square block and cylinderical block, were 100% and 94.0%, respectively. All object's recognition rates are obtained by utilizing the self-made 3-3 type composite transducer and SOFM neural network. From the object recognition rates, it could be seen that an ultrasonic transducer fabricated with the self-made 3-3 type composite resonator will be able to have application for the underwater object recognition.

  • PDF

Neural network based tool path planning for complex pocket machining (신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성)

  • Shin, Yang-Soo;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF