Tae-Sik Yu;Chang Woo Ji;Yong Jun Kim;Gun Hee Oh;Young-Seuk Park;Ihn-Sil Kwak
Korean Journal of Ecology and Environment
/
v.55
no.4
/
pp.285-293
/
2022
Sampling gears for collecting fish are diverse, and the community of fish varies according to the selection and characteristics of the sampling gears. The present study compared the characteristics of fish communities in Yedang reservoir using four sampling gears (kick net, cast net, gill net, and fyke net). The kick net and cast net were inefficient in collecting the number of individuals. However, they increased the species diversity of fish inhabiting the waterfront. Although not many individuals were collected, the gill net mainly collected large fish. The largest number of individuals was collected in the fyke net, and the dominance was high due to the high species selectivity. Through Self-Organizing Map (SOM) analysis, large fish were collected in the gill net, whereas small fish were collected in the fyke net. The characteristics and efficiency of the fish differed depending on the sampling gears. It is expected that researchers will need to use it appropriately according to the characteristics of the sampling gears when investigating the fish community.
Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the high speed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space and generates a topological feature map. A topological feature map preserves the mutual relations (similarities) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Therefore each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented a k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.
Kim, Dong-Hwan;Cho, Hyun-Duk;Cho, Woon-Seok;Song, Mi-Yong;Chon, Tae-Soo
Korean Journal of Ecology and Environment
/
v.43
no.4
/
pp.477-491
/
2010
Benthic macroinvertebrates were collected two times from 116 sites at the $1^{st}{\sim}4^{th}$ order streams in forest areas in Gyungsang province in late spring and late summer. The sample sites belonged to slightly and moderately polluted states. When communities were classified by the Self-Organizing Map (SOM), the gradient was observed according to degree of pollution. Within clusters of slightly polluted sites, however, seasonality was further observed. Scrapers, gatherer-collectors, and filterer-collectors were abundantly observed in late spring while shredders appeared more in late summer. The number of predator species increased in late summer. Behavior types were mostly clingers in two seasons. Community compositions at the moderately polluted sites were not much differentiated in different seasons. Gatherer-collectors and burrowers were dominantly collected in both seasons.
Proceedings of the Korean Society for Quality Management Conference
/
2004.04a
/
pp.573-575
/
2004
This study presents a new customer segmentation method based on features that can predict the customer's buying behavior. In this method, we consider all variables that can affect the customer's buying behavior including demographics, psychographics, technographics, transaction pattern-related variables, etc. We define several features which are the combination of variables with the interaction effect by using C5.0, use SOM (Self-Organizing Map) neural networks in odor to extract the feature's patterns and classify, and then make features' rules using C5.0 far the prediction of customer buying behavior
Proceedings of the Korean Society for Quality Management Conference
/
2004.04a
/
pp.148-151
/
2004
This study presents a new intelligent yield management methodology which can forecast the yield level of a production unit based on features' behaviors. In this proposed methodology, we identify the existing features using C5.0 that are combination of nodes (i.e., variables) in the decision tree generated by C5.0, use SOM(Self-Organizing Map) neural networks in oder to extract the feature's patterns and classify, and then make features' control rules using C5.0.
Park, Sung-Chun;Kim, Jong-Rok;Jin, Young-Hoon;Jeong, Cheon-Lee
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.2061-2065
/
2008
본 연구는 강우-유출 및 TOC의 패턴 분류를 위하여 광주 광산 강우관측소의 강우량자료와 나주지점의 유출량 그리고 기존의 BOD 및 COD 수질농도 측정값에 비하여 적은 오차요인과 빠른 시간에 결과 값을 얻을 수 있으며 유출량과 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC자료를 사용하였다. SOM을 적용하기 위해 먼저 Map의 크기는 Garcia가 제시한 $M=5{\sqrt{N}}$을 이용하여 결정한다. 이러한 비선형적인 다변량 자료를 분석하기 위해서 Map에 의해 구분된 자료 위치를 추출하여 원자료를 재구축하고 이를 통해 원자료를 패턴별로 분류 할 수 있었다. 이러한 패턴별 분류를 통해 유출량에 따른 TOC자료를 2차원의 Map 상에 시각적으로 가시화하여 비선형적인 경향이 강한자료의 분포적 양상을 이해하는데 큰 도움이 되며, 향후 이를 통해 예측을 위한 모형화 과정에도 크게 도움을 줄 것으로 기대된다. 또한, 강우자료 또는 유출량 자료만을 이용한 단일변량의 패턴분류를 위해 SOM의 적용이 가능할 것으로 판단되며, 이는 각 변량의 본질적인 특성을 파악할 수 있을 것으로 기대된다.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.137-140
/
2011
시설의 안전성 평가에 대한 연구는 안전성에 영향을 주는 데이터를 정량화하여 획일적인 자동 수행하는 안전관리가 주를 이루고 있다. 이와 달리 자율수행은 수집 된 상황 정보나 상태 데이터를 이용하여 안전성을 예측하고 사고 위험성을 경보하여 사고를 예방 할 수 있다. 본 연구에서는 다양한 시설물 중에서 가스배관의 부식에 대한 판단을 위해서 신경망의 대표적 비지도학습인 자기조직화지도를 적용한다. SOM의 적용에서는 주변효과를 보완하기 위해서 관계적관점지도로 맵을 구성한다. 학습 할 데이터는 가스배관의 방식전위이다. 배관의 부식상태를 확인하기 위하여 수집 된 데이터인 방식전위에는 부식에 대한 위험요인이 내재되어 있다. 학습 후 새로운 데이터가 입력되면 각 상태 군집의 중심뉴런과 맵핑된 뉴런의 유사도를 측정하여 배관의 부식상태를 결정한다. 제안 된 방법으로 판단 된 결과를 기존에 사람이 판단한 결과와 비교하여 검증한다. 이를 통해 배관의 부식상태를 자율적이고 신속하게 판단하여 지능화 된 가스배관 관리로 활용한다.
The purpose of the study was to suggest automatic recognition of the subject's level of arousal into high arousal and low arousal with neural network SOM learning. The automatic recognition in the level of arousal is composed of three stages. First, it is a stage of ECG measurement and analysis. It measures the subject playing a shooting game with ECG and extracts characteristics for SOM learning. Second, it is a stage of SOM learning. It learns input vectors extracting characteristics. Finally, it is a stage of arousal recognition which recognize the subject's level of arousal when new vectors are input after SOM learning is completed. The study expresses recognition results in the level of arousal and the level of arousal in numerical value and graph when SOM learning results in the level of arousal and new vectors are input. Finally, SOM evaluation was analyzed average 86% by comparing emotion evaluation results of the existing research with automatic recognition results of SOM in order. The study could experience automatic recognition with other levels of arousal by each subject with SOM.
The characteristics of heat wave events in Seoul are analyzed using weather station data from Korea Meteorological Administration (KMA) and European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data from 1979 to 2016. Heat waves are defined as events in the upper 10th percentile of the daily maximum temperatures. The associated synoptic weather patterns are then classified into six clusters through Self-Organizing Map (SOM) analysis for sea-level pressure anomalies in East Asia. Cluster 1 shows an anti-cyclonic circulation and weak troughs in southeast and west of Korea, respectively. This synoptic pattern leads to southeasterly winds that advect warm and moist air to the Korean Peninsula. Both clusters 2 and 3 are associated with southerly winds formed by an anti-cyclonic circulation over the east of Korea and cyclonic circulation over the west of Korea. Cluster 4 shows a stagnant weather pattern with weak winds and strong insolation. Clusters 5 and 6 are associated with F?hn wind resulting from an anti-cyclonic circulation in the north of the Korean Peninsula. In terms of long-term variations, event frequencies of clusters 4 and 5 show increasing and decreasing trends, respectively. However, other clusters do not show any long-term trends, indicating that the mechanisms that drive heat wave events in Seoul have remained constant over the last four decades.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.