• Title/Summary/Keyword: self -assembly

Search Result 690, Processing Time 0.036 seconds

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Separation of Tantalum from Electronic Components on Laptop Printed Circuit Board Assembly (노트북 인쇄회로기판 전자부품으로부터 탄탈럼의 분리)

  • Kwon, Seokje;Park, Seungsoo;Kim, Seongmin;Joe, Aram;Song, Youjin;Park, Poongwon;Park, Jaikoo
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The study to obtain tantalum concentration from electronic components (ECs) on Printed circuit board assembly (PCBA) of laptop was conducted. Electronic components on laptop PCBA were detached from boards by using self-developed experimental apparatus. The detached electronic components were sieved and 93.2 wt.% of tantalum capacitors were concentrated from the size interval from 2.80 mm to 6.35 mm. The tantalum capacitors were pulverized by hammer mill and electrodes (anode and cathode) were removed from the grinding products by using magnetic separators under the magnetic force of 300 Gauss. Finally, tantalum concentrate was concentrated from the magnetic separator products by using Knelson concentrator, and the maximum efficiency of 76.9% was achieved under the operating condition of bowl rotating speed of 200 rpm, and fluidizing water flowrate of 7 L/min. The grade and recovery of Ta concentrate under the condition were 81.1% and 78.8%, respectively.

Liquid Crystal Alignment by Photoreactive 4-Hydroxyazobenzene Thin Film (광감응성 4-Hydroxyazobenzene 박막의 액정 배향)

  • Lee, Won-Ju;Kim, Whan-Ki;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.308-313
    • /
    • 2005
  • The effects of molecular environments on photoisomerization of an azobenzene group were investigated using In-situ UV/Vis spectroscopy and optical anisotropy measurement technique. The reversible and repeatable photoisomeritation reactions of azobenzene were observed by irradiating the film containing 4-hydroxyazobenzene and by measuring absorption intensities of the characteristic bands of trans and cis isomers simultaneously. When the self-assembled monolayer with azobenzene groups was used as an alignment layer for a liquid crystal cell, the homeotropic alignment was induced due to their compact packing structures of azobenfene groups along the vertical direction of the substrate. By irradiating UV light on this cell, the trans-azobenzene groups change to cis-isomers through the photoisonlerieation and then resulting in the planar alignment of liquid crystal molecules.

Hands-On Experience-Based Comprehensive Curriculum for Microelectronics Manufacturing Engineering Education

  • Ha, Taemin;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.280-288
    • /
    • 2016
  • Microelectronic product consumers may already be expecting another paradigm shift with smarter phones over smart phones, but the current status of microelectronic manufacturing engineering education (MMEE) in universities hardly makes up the pace for such a fast moving technology paradigm shift. The purpose of MMEE is to educate four-year university graduates to work in the microelectronics industry with up-to-date knowledge and self-motivation. In this paper, we present a comprehensive curriculum for a four-year university degree program in the area of microelectronics manufacturing. Three hands-on experienced-based courses are proposed, along with a methodology for undergraduate students to acquire hands-on experience, towards integrated circuits (ICs) design, fabrication and packaging, are presented in consideration of manufacturing engineering education. Semiconductor device and circuit design course for junior level is designed to cover how designed circuits progress to micro-fabrication by practicing full customization of the layout of digital circuits. Hands-on experienced-based semiconductor fabrication courses are composed to enhance students’ motivation to participate in self-motivated semiconductor fab activities by performing a series of collaborations. Finally, the Microelectronics Packaging course provides greater possibilities of mastered skillsets in the area of microelectronics manufacturing with the fabrication of printed circuit boards (PCBs) and board level assembly for microprocessor applications. The evaluation of the presented comprehensive curriculum was performed with a students’ survey. All the students responded with “Strongly Agree” or “Agree” for the manufacturing related courses. Through the development and application of the presented curriculum for the past six years, we are convinced that students’ confidence in obtaining their desired jobs or choosing higher degrees in the area of microelectronics manufacturing was increased. We confirmed that the hypothesis on the inclusion of handson experience-based courses for MMEE is beneficial to enhancing the motivation for learning.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

A Novel Al-Bridged Trinuclear Iron(II) Bis(imino)pyridyl Complex with Catalytic Ethylene Polymerization Behavior

  • Long, Zerong;Li, Zhongquan;Ma, Ning;Wu, Biao
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2537-2543
    • /
    • 2011
  • A self-assembled Al-bridged diiminopyridine-based ligand (3) was synthesized and characterized by FT-IR, ESI-MS and NMR spectroscopy. Electron spectral titrations were performed to confirm the formation of a novel trinuclear bis(imino)pyridyl iron(II) complex (4) upon addition of $FeCl_2$ into Al-bridged ligand 3 in methanol solution. Simultaneously, a typical bis(imino)pyridine-iron(II) complex (2) was synthesized and fully characterized. The X-ray crystal study of the iron(II) complex 2 disclosed a five-coordinate, distorted square-pyramidal structure with the tridentate N^N^N ligand and chlorides. The optimal molecular structure of 4 was obtained by means of molecular mechanics, which showed that each iron atom in the complex 4 is surrounded by two chlorides, a tridentate N^N^N ligand and one oxygen atom, supporting considerations about the possibility of six-coordinate geometry from MMAO or the ethylene access. A comparison of 4 with the reference 2 revealed a remarkable decrease of the catalytic activity and MMAO consumption (activity up to $0.41{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 650 for 4 and $7.02{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 1600 for 2).

Analysis of Research on Adherence for Secondary Prevention in Patients with Coronary Artery Disease in Korea (국내 관상동맥질환자의 이차예방을 위한 "이행" 관련 논문분석)

  • Son, Youn-Jung;Kim, Sun-Hee;Song, Hyo-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.17 no.4
    • /
    • pp.575-587
    • /
    • 2010
  • Purpose: The purpose of this study was to analyze the research on adherence for secondary prevention in patients with coronary artery disease (CAD) in Korea, and to identify the strategies for improvement that should be included in future studies. Methods: Electric literature searches were conducted for Pubmed, CINAHL, RISS4U, KISTI, DBpia, KoreaMed, National Assembly Library, and National Library of Korea. A total of forty two articles published between 1986 and 2009 were selected based on established inclusion criteria. Results: Forty research papers were related to nursing, and there was only one research paper focused 011 elderly people with CAD. There were no papers using concept analysis, qualitative study. or randomized controlled clinical trial. Almost all definitions of adherence were adopted from outdated compliance definitions with the attribute of 'paternalistic obligation', Measurement tools were not based on theoretical framework of adherence but borrowed from tools for measuring self-care, health behavior, or self-efficacy. Overall patient's adherence was analyzed in most studies, except for a few studies which focused on diet and exercise only. Educational strategy was the main strategy used in intervention studies. Conclusions: The concept of adherence and measurement tools need to be clarified, along with development of the specific adherence interventions according to the type of adherence in patients with CAD.

Factors Influencing the Quality of Life of Stroke Patients : A Systematic Review (뇌졸중 환자의 삶의 질에 영향을 끼치는 요인: 체계적 문헌고찰)

  • Jung, Jun-Sik
    • Therapeutic Science for Rehabilitation
    • /
    • v.4 no.1
    • /
    • pp.39-51
    • /
    • 2015
  • Objective : To synthesize and identify the studies that delineated the relationship between quality of life and other factors in stroke patients in South Korea. Method : Electronic databases were searched, including KISS, NDSL, National Assembly Library and KmBase. The search terms included stroke, quality of life and correlation, relationship. Only papers published in Korean were included. Results : Twelve studies, from 256 references screened, were included. All studies were non-experimental and correlational analysis. A correlation coefficient between Quality of Life and ADL .293~.622, Depression -.804~-.533, Cognition .090~.610, Quality of Sleep .107, Quality of Satisfaction .367, Fatigue -.260, MAL(Quality of Movement .208, Amount of Use .364), Family Support .824, Pain -.306, Motivation for Rehabilitation .51~.86, Balance .740, Self-efficacy .388 were analyzed respectively. Conclusion : The quality of life of stroke patients was influenced by multiple factors. Occupational therapists need to consider the functions of upper extremity and activities of daily living as well as depression, cognition, sleep, family support, pain, and self efficacy to improve quality of life of stroke patients.

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

First-principles Study of the Structure and Growth Mechanism of Allyl Alcohol Lines on the H-terminated Si(001)

  • Choi, Yun-Ki;Choi, Jin-Ho;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.184-184
    • /
    • 2011
  • Using first-principles density-functional calculations, we investigate the chain reaction mechanism of allyl alcohol (ALA) molecules on the H-terminated Si(001)-2${\times}$1 surface. Recently, it was reported [1] that allyl mercaptan (ALM) molecules show a self-directed line growth across the dimer rows through a chain reaction involving several reaction processes: (i) The created radical at the C atom is transferred to the S atom, (ii) the resulting S-centered radical easily abstracts an H atom from the neighboring dimer row, and (iii) the generated S-H group further reacts with the neighboring dimer row to produce the Si-S bond on the neighboring dimer row, accompanying the associative desorption of H2. This H2-desorption process creates a new DB on the neighboring dimer row, setting off the chain reaction across the dimer rows. In the present study, we find that although the structure of ALA with -OH functional is analogous to that of ALM with -SH functional, ALA and ALM lines show a difference in their growth direction. We predict that ALA undergoes the chain reaction to show a line growth along the dimer row, contrasting with the ALM line growth across the Si dimer rows. Our analysis shows that the different growth direction of ALA is due to the strong instability of oxygen radical intermediate, which prevents from growing across the dimer rows. Thus, we demonstrate that the stability of the radical intermediate plays a crucial role in determining the direction of molecular line growth.

  • PDF