• Title/Summary/Keyword: selenium(Se)

Search Result 382, Processing Time 0.031 seconds

Selenization of the CIGS Thin Film by Using the Cracked Selenium

  • Kim, Min-Yeong;Kim, Gi-Rim;Kim, Jong-Wan;Son, Gyeong-Tae;Im, Dong-Geon;Lee, Jae-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.704-704
    • /
    • 2013
  • CIGS 박막 태양전지는 I-III-VI족 화합물 반도체로서 직접천이형 에너지 밴드 구조를 가지고 있고, $1{\times}10$ cm의 높은 흡수계수를 가지고 있으며, Ga, Ag, Al을 첨가함으로써 밴드갭을 1~2.7 eV 넓은 범위로 조절가능하다. 본 연구의 목적은 Sputtering 방식과 Cracker cell을 이용한 실험으로 보다 효율적인 방식으로 CIGS 전구체 조성별 특성에 따른 구조와 전기적, 광학적 특성의 효과에 대하여 조사하였다. Cu-In-Ga 전구체는 CuGa(80-20 at.%)과 In(99.0%) target을 사용하여, Sputtering 공정으로 증착하였으며, Cracker cell이 부착된 RTP (rapid thermal processing)를 통하여 셀렌화를 진행하였다. Reservoir zone 온도는 320도, Cracking zone 온도는 900도로 유지하였으며, 진공상태에서 Se이 공급되면서 열처리가 진행되었다.Cu-In-Ga 전구체 구조에서 In의 증착시간을 변화시켜 CIGS 박막에 미치는 영향에 대해 분석하였다. 이때 기판온도는 $500^{\circ}C$로 고정하거나, $240^{\circ}C$ 열처리 후 $500^{\circ}C$에서 열처리하는 두가지를 적용하여 그 영향을 분석하였다. 또한 Selenium이 Cracking zone 온도와 열처리 시간에 따라 미치는 영향의 변화를 조사하였다. 이에 따른 CIGS 박막의 전기적 특성의 변화를 조사하였다.

  • PDF

Ultrastructural Localization of ZnT3 and Zinc Ions in the Mouse Choroid Plexus (생쥐 맥락얼기에 분포하는 ZnT3 및 zinc 이온의 조직화학적 동정)

  • Kim, Sung-Joo;Kim, Yong-Kuk;Sun, Yuan-Jie;Kim, Soo-Jin;Jeong, Young-Gil;Yu, Yun-Cho;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • We have detected the murine zinc transporter, ZnT3, and zinc ions in the mouse choroid plexus by immunocytochemistry (ICC) and zinc selenium autometallography ($ZnSe^{AMG}$), respectively. BALB/c mice served as experimental animals. Routine floating ABC immunocytochemical procedures were used for the ZnT3 immunocytochemistry, and the mice were injected intraperitoneally (i.p.) with sodium selenide (10 mg/kg) for the zinc selenium autometallography. The choroid plexus showed weak immunoreactivity (Ir) for ZnT3. At high magnification, ZnT3-Ir was seen to be located in the choroid epithelium and the connective tissue of the capillaries. At the EM level, a high electron density of ZnT3-immunoreactivity was restricted to vesicle membranes as well as microvilli in the apical membrane. In contrast, immunostaining of ZnT3 was completely absent in the basolateral plasma membrane and other cell organelles. After silver enhancement, fine $ZnSe^{AMG}$ grains were observed in both the epithelial and endothelial cells of the choroid plexus. Few $ZnSe^{AMG}$ grains present in the cell bodies of the choroid epithelial cells were located in multivesicular bodies. It is striking that very many $ZnSe^{AMG}$ grains were observed in the endothelial cells of the capillaries. These findings establish the choroid plexus as a non-neuronal pool of zinc ions in the brain, although the functional significance of this pool is not clear. The choroid epithelium, however, may play an important role in the transportation of zinc between the CSF and brain tissue.

Thermodynamics of Se(IV) Sorption Onto Ca-type Bentonil-WRK Montmorillonite

  • Seonggyu Choi;Ja-Young Goo;Jeonghwan Hwang;Yongheum Jo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • Se sorption onto Ca-type montmorillonite purified from Bentonil-WRK-a new research bentonite introduced by Korea Atomic Energy Research Institute-was examined under ambient conditions (pH 4-9, pe 7-9, I = 0.01 M CaCl2, and T = 25℃). Se(IV) was identified as the oxidation state responsible for weak sorption (Kd < 22 L·kg-1) by forming surface complexes with edge functional groups of the montmorillonite. Thermodynamic modeling, considering reaction mechanisms of outer-sphere complexation (≡AlOH+2 + HSeO3- ⇌ ≡AlOH3SeO3, log K = 0.50 ± 0.21), inner-sphere complexation (2≡AlOH + H2SeO3(aq) ⇌ (≡Al)2SeO3 + 2H2O(l), log K = 7.89 ± 0.51), and Ca2+-involved ternary complexation (≡AlOH + Ca2+ + SeO32- ⇌ ≡AlOHCaSeO3, log K = 7.69 ± 0.28) between selenite and aluminol sites of montmorillonite, acceptably reproduced the batch sorption data. Outer- and inner-sphere complexes are predominant Se(IV) forms sorbed in acidic (pH ≈ 4) and near-acidic (pH ≈ 6) regions, respectively, whereas ternary complexation accounts for Se(IV) sorption at neutral pHs under the ambient conditions. The experimental and modeling data generally extend a material-specific sorption database of Bentonil-WRK, which is essential for assessing its radionuclide retention performance as a buffer candidate of deep geological disposal system for high-level radioactive waste.

A Study on the Trace Metal Contents in Food by Neutron Activation Analysis (방사화 분석법에 의한 식품 중 미량금속(Mg, Zn, Mn, Mo and Se)에 관한 연구)

  • 이숙경
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.328-332
    • /
    • 1997
  • In order to investigate the trace metals in Korean foods, the contents of Magnesium, Zinc, Manganese, Molybdenum and Selenium are studied in this paper. As show in the Table 1; a total of 250 samples of 25 species were analyzed by neutron activation analysis. The results obtained were as follows; 1. The overall ranges and mean (mg/100 g) were; Mg, 12.212∼151.346(55.164); Zn, 0.045∼38.180 (2.473); Mn, 0.003∼0.796 (0.225);Mo, ND∼0.035 (0.007); Se, ND∼0.069 (0.016). 2. The levels of all metals except Mo in shell fishes were high and the level of Mo in spices was higher than that in other foods. 3. The levels of Zn and Mo in oyster were higher than another spcies.

  • PDF

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon;Han, Jae-Eok;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.434-438
    • /
    • 2011
  • Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1389-1393
    • /
    • 2002
  • The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

Effect of Sodium Selenate Supplied Condition by Fertigation on the Growth and Content of Minerals, Ascorbic acid, Nitrate, and Selenium of Some Western Vegetables (Sodium selenate의 토양관주 처리방법에 따른 서양채소의 생육과 무기성분, ascorbic acid, nitrate 및 셀레늄 함량에 미치는 영향)

  • Lee, Sung-Jin;Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • This study was conducted to investigate the proper supplied conditions of sodium selenate supplied by fertigation to improve functionality of major western vegetables; beet, broccoli, cabbage lettuce, celery, and parsley in highland. In this work, the growth and content of minerals, ascorbic acid, nitrate, and selenium were measured in western vegetables that treated sodium selenate by different concentration, treatment time and treatment frequency. While there was not different in early growth of some western vegetables among different concentration of sodium selenate; 1,2, 5 and $20\;mg{\cdot}L^{-1}$, at 20 days after treatment, the fresh weight was reduced 33% at cabbage lettuce,47% at broccoli, and 74% at parsley compared control in $5\;mg{\cdot}L^{-1}$ treatment. But the fresh weight of beet and celery reduced just 20% and 15% compared control in even $20\;mg{\cdot}L^{-1}$. The ascorbic acid of cabbage lettuce, celery, and beet increased as sodium selenate concentration increased, so that of cabbage lettuce showed 1.2 times compared control in $20\;mg{\cdot}L^{-1}$ treatment and also that of beet and celery increased 10%. But the ascorbic acid of broccoli and parsley was not influenced by treated sodium selenate. As the concentration of sodium selenate increased, the nitrate contents decreased regardless of crops compared control. This reduced effect of nitrate was highest in cabbage lettuce, followed by beet and celery. The mineral contents, such as K, Ca, and Mg, decreased in all crops, as the concentration of sodium selenate increased. The potassium content showed an obvious negative correlationship with the concentrations of sodium selenate regardless of crops, but the magnesium and calcium content did not show significant difference between treatments. The selenium content increased in proportion as increasing sodium selenate concentrations. The broccoli, celery and parsley treated $20\;mg{\cdot}L^{-1}$ sodium selenate showed 24.4 times, 76.4 times, and 560 times higher than control, respectively. When the sodium selenate supplied to some western vegetables in different growth stage, the selenium content increased 1.3 times and 1.4 times higher in early stage than in late stage in cabbage lettuce and broccoli, respectively. However in parsley and celery, the selenium content showed the highest in middle stage. The selenium content increased in proportion as increasing the sodium selenate treatment frequency, but in above 10 times treatment, the increased effect alleviated in parsley, celery, and cabbage lettuce. On the contrary, the selenium content of broccoli increased constantly as treatment frequency increased.

Effects of Dietary Organic Selenium and Vitamin E on Performance, Selenium Retention and Quality of Egg in Laying Hens (유기태 셀레늄과 비타민 E의 복합 급여가 산란계의 생산성, 셀레늄 축적 및 난질에 미치는 영향)

  • Na, J.C.;Kim, J.H.;Yu, D.J.;Jang, B.G.;Kang, G.H.;Kim, S.H.;Kang, B.S.;Choi, C.H.;Suh, O.S.;Lee, W.J.;Lee, J.C.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • To examine the effects of dietary organic selenium and vitamin E supplementation on egg production, egg weight, daily egg mass, feed intake, feed conversion, egg quality, lipid-soluble antioxidative capacity (ACL) in egg yolk, and selenium retention of egg in laying hens, Hy-Line laying hens of 77 wk old were replaced in the individual cage for 12 week. A corn-soybean meal based diet was supplemented with 0 (control), vitamin E 100 IU/kg and the combination of 0.9 ppm Se from selenium yeast (SY) and vitamin E 50, 100 and 150 IU/kg. Egg production and daily egg mass were significantly increased (P<0.05) in supplemental vitamin E 100 IU, and 0.9 ppm SY + vitamin E 50 IU than control for the whole experimental period. However, feed intake and feed conversion were not affected by supplemental vitamin E and SY. Haugh unit was significantly (P<0.05) higher in supplemental vitamin E 100 IU and 0.9 ppm SY + vitamin E 50 IU than control, 0.9 ppm SY + vitamin E 100 and 0.9 ppm SY + 150 IU in week 5. Haugh unit of the eggs during storage decreased significantly(P<0.05) from day 1 to day 11. However, Haugh units of the eggs from 0.9 ppm SY + vitamin E 150 IU treated groups did not decreased significantly until day 5. Yolk color was significantly (P<0.05) higher in 0.9 ppm SY + vitamin E 50 and 0.9 ppm SY + 100 IU than other treatment groups in week 1. Selenium concentrations of egg were significantly increased (P<0.05) in 0.9 ppm SY + vitamin E than control and vitamin E 100 IU groups. Lipid-soluble antioxidative capacity (ACL) in egg yolk was significantly (P<0.05) higher in supplemental combination of 0.9 ppm SY + vitamin E 150 IU when compared to those of other treatment groups.

Analysis of Selenium in Grain with ORC Collision-Removal of Br Interference using Mathematical Calibration (ORC ICPMS에서의 곡류중의 셀레늄 분석-수학적 보정을 이용한 Br의 간섭제거)

  • Cho, Heon-Hong;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.472-477
    • /
    • 2011
  • The concentration of selenium in grain samples was determined using isotope dilution method in ORC-ICPMS. The experimental conditions were optimized to $H_2$ mode and the flow rate was $4.0\;mL\;min^{-1}$. ORC in $H_2$ mode proved to eliminate most of polyatomic interferences except $BrH^+$ when Br is present in sample matrix. Chemical removal of Br was very difficult and the mathematical correction was successfully employed. The fraction of $BrH^+$ generated from Br at the current experimental condition was 14.1%. The signal on m/z 82 was corrected and calculated for isotope dilution. The analytical reliability of the propose method was successfully evaluated by analyzing the certified standard reference material NIST SRM 1566 and 1567. The method was applied to real samples and the results are $0.034{\pm}0.001\;{\mu}g\;g^{-1}$ for white rice, $0.059{\pm}0.002_5\;{\mu}g\;g^{-1}$ for brown rice, $0.029{\pm}0.001_4\;{\mu}g\;g^{-1}$ for black rice, and $0.034{\pm}0.002\;{\mu}g \;g^{-1}$ for barley. The detection limits ($3\sigma$) for Se was $0.012\;ng\;g^{-1}$.