• Title/Summary/Keyword: selective laser melting

Search Result 73, Processing Time 0.028 seconds

Influence of Si-rich Phase Morphologies on Mechanical Properties of AlSi10Mg Alloys processed by Selective Laser Melting and Post-Heat Treatment (선택적 레이저 조형된 AlSi10Mg합금의 후열처리에 따른 Si-rich상 형상변화가 기계적 특성에 미치는 영향)

  • Nam, Jung-woo;Eom, Yeong Seong;Kim, Kyung Tae;Son, Injoon
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2021
  • In this study, AlSi10Mg powders with average diameters of 44 ㎛ are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320℃, strength decreases while elongation significantly increases up to 13% at 320℃. The microstructures and tensile properties of the two heat-treated samples at 290 and 320℃, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.

Enhancing the Two Way Shape Memory Functionality of Ni-Ti Sheet through the Deposition of Ti Layer (Ti 적층을 이용한 Ni-Ti 계 판재의 양방향 형상기억 기능성 개선 연구)

  • H. N. Kwon;Y. H. Park;D. Abolhasani;Y. H. Moon
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.330-340
    • /
    • 2024
  • The martensitic Ni-Ti shape memory alloys(SMA) can achieve a two-way shape memory effect (TWSME) through thermomechanical training/cycling. In this study, the surface of Ni-Ti SMA sheets was treated by depositing a certain number of titanium (Ti) powder layers using a selective laser meling (SLM) process to enhance TWSME. The results showed that a unique TWSME of approximately 12% with good stability was achieved after 100 training cycles when the optimum number of five Ti layers was deposited. A larger HAZ and lower cooling rate pushed more Ti particles into the grains rather than the grain boundaries, providing more time for Ti to react with NiTi to form Ti-rich intergranular Ti2Ni(Ox) precipitates. This resulted in further hindering of dislocation movement within the grains and the generation of internal stress fields required for attaining a larger TWSME. With an increase in the number of Ti-deposited layers, there was no noticeable reduction in the one-way shape memory effect (OWSME) through the initial cycling. This was due to the high residual tensile stress caused by the lower thermal expansion of the Ti layer compared to the Ni-Ti sheet.

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness (LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구)

  • Woo, Jeongmin;Kim, Ji-Yoon;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys (AlSi10Mg 합금분말 크기가 선택적 레이저 용융된 3차원 조형체 특성에 미치는 영향)

  • Eom, Yeong Seong;Kim, Dong Won;Kim, Kyung Tae;Yang, Sang Sun;Choe, Jungho;Son, Injoon;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Aluminum (Al) - based powders have attracted attention as key materials for 3D printing because of their excellent specific mechanical strength, formability, and durability. Although many studies on the fabrication of 3D-printed Al-based alloys have been reported, the influence of the size of raw powder materials on the bulk samples processed by selective laser melting (SLM) has not been fully investigated. In this study, AlSi10Mg powders of 65 ㎛ in average particle size, prepared by a gas atomizing process, are additively manufactured by using an SLM process. AlSi10Mg powders of 45 ㎛ average size are also fabricated into bulk samples in order to compare their properties. The processing parameters of laser power and scan speed are optimized to achieve densified AlSi10Mg alloys. The Vickers hardness value of the bulk sample prepared from 45 ㎛-sized powders is somewhat higher than that of the 65 ㎛m-sized powder. Such differences in hardness are analyzed because the reduction in melt pool size stems from the rapid melting and solidification of small powders, compared to those of coarse powders, during the SLM process. These results show that the size of the powder should be considered in order to achieve optimization of the SLM process.

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method (압출 적층 방식의 알루미늄 용융기의 설계 및 해석)

  • Lee, Hyun-Seok;Na, Yeong-Min;Kang, Tae-Hun;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

The removable prosthetic restorations utilizing CAD/CAM system (임상가를 위한 특집 4 - CAD/CAM 시스템을 이용한 가철성 보철 수복)

  • Park, Ji-Man;Park, Eun-Jin;Kim, Seong-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.140-147
    • /
    • 2012
  • Recently, the digital solution of fabricating removable prosthesis by applying haptic input device, electronic surveying, and rapid prototyping was introduced. This review article covers the concept of electronic surveying, computer-aided denture framework designing procedure, discussions after several digital denture cases, directions of future development, such as digital tooth arrangement and RP flasking.

A Comparative Analysis of the Classification System for Three-Dimensional Concrete Printers (3D 콘크리트 프린터 분류체계 비교연구)

  • Chung, Jihoon;Lee, Ghang;Kim, Jung-Hoon;Choi, Jaejin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.3-14
    • /
    • 2020
  • This study reviews and comparatively analyzes existing classification systems for 3D concrete printers to propose a classification system for 3D concrete printers. Several classifications for existing 3D printers have been proposed and used in the market. Nevertheless, quite a few of the printer types such as fused deposition modeling (FDM) and selective laser melting (SLM) are not suitable for characterizing 3D concrete printers. To derive the properties that distinguish one 3D concrete printer type from the others, this study reviews existing 3D concrete printers and comparatively analyzes the properties of 3D concrete printers identified in previous studies. The results show that existing classifications do not reflect the states-of-the-art of 3D concrete printers, the classification terms are ambiguous, and the entire printing processes are not considered. A new classification system was proposed based on the essential properties of the 3D concrete printers identified through the analysis of related work. The result of this study can be used as a basis for classifying commercial 3D concrete printers as well as studies related to 3D concrete printers.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.