• Title/Summary/Keyword: selective detection

Search Result 582, Processing Time 0.023 seconds

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

Electrodeposition of Graphene-Zn/Al Layered Double Hydroxide (LDH) Composite for Selective Determination of Hydroquinone

  • Kwon, Yeonji;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1755-1762
    • /
    • 2013
  • A graphene-Zn/Al layered double hydroxide composite film was simultaneously prepared by electrochemical deposition on the surface of a glassy carbon electrode (G-LDH/GCE) from the mixture solution containing GO and nitrate salts of $Zn^{2+}$ and $Al^{3+}$. The modified electrode showed good electrochemical performances toward the simultaneous electrochemical detection of hydroquinone (HQ), catechol (CA) and resorcinol (RE) due to the unique properties of graphene (G) and LDH such as large active surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of G-LDH/GCE were investigated with cyclic voltammetry and differential pulse voltammetry. The well-separated oxidation peak potentials, corresponding to the oxidation of HQ, CA and RE, were observed at 0.126 V, 0.228 V and 0.620 V respectively. The amperometric response of the modified electrode exhibited that HQ can be detected without interference of CA and RE. Under the optimized conditions, the oxidation peak current of HQ is linear with the concentration of HQ from 6.0 ${\mu}M$ to 325.0 ${\mu}M$ with the detection limit of 0.077 ${\mu}M$ (S/N=3). The modified electrode was successfully applied to the direct determination of HQ in a local tap water, showing reliable recovery data.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye (나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서)

  • Jung, Suenghwa;Cho, Yeong Beom;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Highly Sensitive and Naked Eye Dual-readout Method for ʟ-Cysteine Detection Based on the NSET of Fluorophore Functionalized Gold Nanoparticles

  • Fu, Xin;Liu, Yuan;Wu, Zhitao;Zhang, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1159-1164
    • /
    • 2014
  • A simple, highly sensitive and selective method based on the rhodamine B-covered gold nanoparticle with dual-readout (colorimetric and fluorometric) detection for $\small{L}$-cysteine is proposed. A mechanism is that citrate-stabilized AuNPs were modified with RB by electrostatic interaction, which enables the nanometal surface energy transfer (NSET) from the RB to the AuNPs, quenching the fluorescence. In the presence of $\small{L}$-cysteine, it was used as a competitor in the NSET by the strongly Au-S bonding to release RB from the Au surface and recover the fluorescence, and the red-to-purple color change quickly, which was monitored simply by the naked eye. Under the optimum conditions, the detection limit is as low as 10 nM. The method possessed the advantages of simplicity, rapidity and sensitivity at the same time. The method was also successfully applied to the determination of $\small{L}$-cysteine in human urine samples, and the results were satisfying.

Out-of-band Collaborative Spectrum Sensing of CR System in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 CR 시스템의 외부대역 협력 스펙트럼 센싱)

  • Kang, Bub-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.564-571
    • /
    • 2009
  • In this paper, we propose out-of -band collaborative spectrum sensing scheme in the cognitive radio (CR) base station operated by the multiple frequency channels. Also this paper presents the signal detection results for ATSC digital TV signal as an incumbent signal and derives signal detection probability and false alarm probability for the out-of-band collaborative spectrum sensing scheme in frequency selective Rayleigh fading channel. Numerical results demonstrate that the sensing performance is improved by the out-of-band collaborative spectrum sensing in the case that the incumbent signal powers measured by the CR terminals of the multiple frequency channels are almost similar.

Study on Bead-based Microbiochip and Analytical System for Protein Detection

  • Kim, Min-Soo;Chung, Woo-Jae;Cho, Su-Hyung;Park, Sung-Soo;Kim, Byung-Gee;Lee, Young-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.60-63
    • /
    • 2002
  • This paper presents bead-based microbiocihps to detect and separate target proteins. Micro beads coated with capture proteins were introduced into a microchamber, and target proteins flowing across the chamber were bound and concentrated. The chip was connected with an external fluid system. Bead surfaces were double-coated with photo-cleavable linkers and capture proteins. The proteins bound on the beads were photo-separated under UV irradiation, and excited to be measured in fluorescence. $38{\sim}50{\mu}m$ sized polystyrene beads were used. SOGs(silicon-on-glass) were used to fabricate the microchip having glasses bonded on both sides. 100 ${\mu}m$ thick silicon channel was formed through silicon deep RIE process. The upper glass cover had holed through to have inlets and outlets fabricated by powder-blastings. In this study, biotin and streptavidin were used as capture proteins and detection proteins, respectively. The protein mixtures of streptavidin, HSA(human serum albumin) and ovalbumin were applied for selective detection test.

  • PDF

Status and Prospects of PCR Detection Methods for Diagnosing Pathogenic Escherichia coli : A Review

  • Yim, Jin-Hyeok;Seo, Kun-Ho;Chon, Jung-Whan;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.51-62
    • /
    • 2021
  • Escherichia coli are the predominant facultative bacteria found in the gastrointestinal tract of animals and humans. Some strains of E. coli that acquire virulence factors and cause foodborne and waterborne diseases in humans are called pathogenic E. coli and can be divided into five pathotypes according to the virulence mechanism: EAEC, EHEC, EIEC, EPEC, and ETEC. Although selective media have been developed to detect E. coli, distinguishing pathogenic strains from non-pathogenic ones is difficult because of their similar biochemical properties. Therefore, it is very important to find a new and effective diagnostic method to identify pathogenic E. coli. With recent advances in molecular biology and whole genome sequencing, the use of polymerase chain reaction (PCR) is increasing rapidly. In this review paper, we provide an overview of pathogenic E. coli and present a review on PCR detection methods that can be used to diagnose pathogenic E. coli. In addition, the possibility of real-time PCR incorporating IAC is introduced. Consequently, this review paper will contribute to solving the current challenges related to the detection of pathogenic E. coli.

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters

  • Stefanita Carmen Gabriela;Shao Yun Feng
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.428-434
    • /
    • 2004
  • Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.

Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Shirvani Arani, Simindokht;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1738-1742
    • /
    • 2005
  • In this study a novel triiodide ion-selective electrode based on a charge transfer complex of iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (ICT), as a membrane carrier was prepared. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ and 5.0 ${\times}$ $10^{-7}$ M, with a Nernstian slope of 58. 99 ${\pm}$ 0.3 mV $decade^{-1}$ and detection limit of 3.0 ${\times}$ $10 ^{-7}$ M. The potentiometric response of the proposed sensor is independent of the pH of the solution in the pH range of 3.0-10.0. The electrode possesses the advantages of short conditioning time, fast response time, and especially, very good selectivity over a large number of common organic and inorganic anions. The electrode can be used for at least 6 months without any considerable divergences in the potentials. It was used as an indicator electrode in potentiometric titration of triiodide ion with thiosulfate.