• Title/Summary/Keyword: selective Removal

Search Result 318, Processing Time 0.027 seconds

Power MESFETs Fabricated using a Self-Aligned and Double Recessed Gate Process (자기정렬 이중 리쎄스 공정에 의한 전력 MESFET 소자의 제작)

  • 이종람;김도진;윤광준;이성재;강진영;이용탁
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.77-79
    • /
    • 1992
  • We propose a self-aligned and double recessed technique for GaAs power MESFETs application. The gate length and the wide recess width are defined by a selective removal of the SiN layer using reactive ion etching(RIE) while the depth of the channel is defined by chemical etching of GaAs layers. The threshold voltages and the saturation drain voltage could be sucessfully controlled using this technique. The lateral-etched distance increases with the dry etching time and the source-drain breakdown voltage of MESFET increases up to about 30V at a pinch-off condition. The electrical characteristics of a MESFET with a gate length of 2 x10S0-6Tm and a source-gate spacing of 33 x10S0-6Tm show maximum transconductance of 120 mS/mm and saturation drain current density of 170-190mA/mm at a gate voltage of 0.8V.

  • PDF

Nanoprobe-based Mechano-Chemical Scanning Probe Lithography Technology (나노프로브 응용 기계-화학적 나노리소그래피 기술)

  • Sung, In-Ha;Kim, Dae-Eun;Shin, Bo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1043-1047
    • /
    • 2003
  • With the advancement of micro-systems and nanotechnology, the need for ultra-precision fabrication techniques has been steadily increasing. In this paper, a novel nano-structure fabrication process that is based on the fundamental understanding of nano-scale tribological interaction is introduced. The process, which is called Mechano-Chemical Scanning Probe Lithography (MC-SPL), has two steps, namely, mechanical scribing for the removal of a resist layer and selective chemical etching on the scribed regions. Organic monolayers are used as a resist material, since it is essential for the resist to be as thin as possible in order to fabricate more precise patterns and surface structures. The results show that high resolution patterns with sub-micrometer scale width can be fabricated on both silicon and various metal surfaces by using this technique.

  • PDF

Emerging role of mitophagy in human diseases and physiology

  • Um, Jee-Hyun;Yun, Jeanho
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.299-307
    • /
    • 2017
  • Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology.

Investigation of the Water Gas Shift from Reforming Gas for CO Removal (일산화탄소 저감을 위한 개질가스의 전이반응 연구)

  • Kim, Seong-Cheon;Youn, Moon-Jung;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.855-859
    • /
    • 2007
  • Hydrogen as an energy carrier in fuel cell offers perhaps the largest potential benefits of reduced emissions of pollutants and greenhouse gases. The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. Reduction of carbon monoxide to an acceptable level of 10ppm involves high temperature and low temperature water gas shift (WGS), followed by selective oxidation of residual carbon monoxide. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 5000 ppm. In the water gas shift operation, gas emerges from the reformer is taken through a high temperature shift (HTS) catalyst to reduce the CO concentration to about $2{\sim}4%$ followed to about 5000 ppm via a low temperature shift (LTS) catalyst.

A Numerical Analysis on the Flow Characteristics inner Catalytic Reactor for Marine SCR System (선박용 SCR 시스템의 촉매반응기 내부 유동특성에 관한 수치해석)

  • Yi, C.S.;Suh, J.S.;Yun, J.H.;Lim, B.J.;Park, C.D.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.125-126
    • /
    • 2012
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. Performance of NOx removal in SCR process depends on such various factors as catalyst factors(catalyst composition, shape, velocity, etc.), exhaust gas temperature and velocity distribution. In this study checked flow uniformity with the flow characteristics in the SCR reactor by using STAR CCM+. The pressure drop of experiment and simulation had similar result more than 90% at catalytic Cell. Also, flow uniformity calculated about 0.9036 ant 1st catalytic ind SCR reactor.

  • PDF

Numerical Analysis of UV Laser Patterning of Polymeric Thin-Film (자외선 레이저를 이용한 폴리머 박막 가공의 수치해석)

  • Oh, B.K.;Lee, S.K.;Song, M.K.;Kim, J.W.;Hong, S.K.
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • Conventional patterning based on wet-process for multi-layered film is a relatively complex and costly process though it is a necessary step for fabrication of TFT-LCD module. Recently, a direct pattering by laser has been studied because it is low cost and simple process compared to the wet process. In this work, the selective removal process of multi-layered film (polyimide/indium tin oxide/glass) is studied by modeling the thermal and mechanical behavior for multi-layered structure. Especially, the effects of thickness of polyimide layer are examined.

  • PDF

CO2 dry-ice cleaning for the removal of air preheater plugging in coal-fired power plant. (석탄 화력발전소의 공기예열기 막힘 제거를 위한 CO2 드라이아이스 세정)

  • Ju, Saerom;Kim, Gyeong-Min;Kim, Do-Jung;Kim, Dong-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.204-206
    • /
    • 2014
  • 석탄 화력발전소에는 연소가스의 질소산화물(NOx) 저감을 위한 SCR(selective catalytic reduction)설비가 운전되고 있으며, SCR은 환원제인 암모니아($NH_3$)를 이용하여 연소가스 내에 질소산화물을 물과 질소로 분해하는 역할을 한다. 그러나, 연소가스 중의 일부 삼산화황($SO_3$)과 미반응 암모니아가 결합하여 황산암모늄염(Ammonium bisulfate; $NH_4HSO_4$)을 생성하며, 이는 후단 APH(air preheater)의 열소자에 점착된 후 분진들과 함께 성장하여 막힘을 야기한다. 막힘이 발생된 APH는 연소가스의 흐름을 방해하기 때문에 차압을 증가시키며, 이는 발전효율의 감소뿐만 아니라 급전정지를 초래한다. 이를 해결하기 위하여 $CO_2$ 드라이아이스 세정 방법을 적용하였으며, pilot-scale plant에서 실험을 수행하였다. 또한, 드라이아이스 공정변수인 분사압력과 분사시간을 제어하여 pilot-scale plant의 APH 열소자 표면에 생성되어있는 오염물질들의 제거효율을 관찰한 결과 95 %의 높은 제거효율을 보였다.

  • PDF

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

  • Seri, Osami
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.158-161
    • /
    • 2008
  • It is well known that iron is one of the most common impurity elements found in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as $FeAl_3$. The $FeAl_3$ particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of $FeAl_3$ particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting $FeAl_3$ free surface was an electrochemical treatment such as cathodic current density of $-2kAm^{-2}$ in a 20-30 mass% $HNO_3$ solution for the period of 300s. The corrosion characteristics of aluminum surface with $FeAl_3$ free particles are examined in a $0.1kmol/m^3$ NaCl solution. It is found that aluminum with free $FeAl_3$ particles shows higher corrosion resistance than aluminum with $FeAl_3$ particles.

Transient Protection of Intramolecular Hydrogen Bonding: A Simple but Elegant Approach for Functional Imaging

  • Kim, Jong-Man;Min, Sung-Jun;Park, Bum-Jun;Lee, Jae-Hyung;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • We have developed a novel method for patterning functional images in thin polymer films. The key materials we utilized for the imaging were dihydroxyanthraquinones protected with acid-labile tert-butoxycarbonyl (t-Boc) blocking groups. Among the tested compounds, 1,4-dihydroxyanthraquinone (quinizarin; 1) underwent the most drastic change in terms of its color and fluorescence upon protection. We prepared the t-Boc-protected quinizarin and polymers bearing the protected quinizarins as pendent groups. To investigate the possibility of a single-component imaging system, we synthesized a styrenic monomer 14 incorporating protected quinizarin and a maleimide derivative 15 bearing a photoacid generating group and subjected them to polymerization. Selective removal of the protecting groups of the quinizarin moieties in the exposed area using photolithographic techniques allowed regeneration of quinizarin and patterned fluorescence images in the polymer films.