DOI QR코드

DOI QR Code

Emerging role of mitophagy in human diseases and physiology

  • Um, Jee-Hyun (Department of Biochemistry, College of Medicine, Dong-A University) ;
  • Yun, Jeanho (Department of Biochemistry, College of Medicine, Dong-A University)
  • Received : 2017.03.31
  • Published : 2017.06.30

Abstract

Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology.

Keywords

References

  1. Taylor RW and Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6, 389-402 https://doi.org/10.1038/nrg1606
  2. Kang D and Hamasaki N (2005) Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 12, 429-441 https://doi.org/10.2174/0929867053363081
  3. Sun N, Youle RJ and Finkel T (2016) The Mitochondrial Basis of Aging. Mol Cell 61, 654-666 https://doi.org/10.1016/j.molcel.2016.01.028
  4. Baker MJ, Palmer CS and Stojanovski D (2014) Mitochondrial protein quality control in health and disease. Br J Pharmacol 171, 1870-1889 https://doi.org/10.1111/bph.12430
  5. Burte F, Carelli V, Chinnery PF and Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11, 11-24
  6. Ashrafi G and Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20, 31-42 https://doi.org/10.1038/cdd.2012.81
  7. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 https://doi.org/10.1038/nature04779
  8. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161 https://doi.org/10.1038/nature04788
  9. Narendra D, Tanaka A, Suen DF and Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183, 795-803 https://doi.org/10.1083/jcb.200809125
  10. Zhu J, Wang KZ and Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663-1676 https://doi.org/10.4161/auto.24135
  11. Lemasters JJ (2014) Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2, 749-754 https://doi.org/10.1016/j.redox.2014.06.004
  12. Lu H, Li G, Liu L, Feng L, Wang X and Jin H (2013) Regulation and function of mitophagy in development and cancer. Autophagy 9, 1720-1736 https://doi.org/10.4161/auto.26550
  13. Eiyama A and Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33, 95-101 https://doi.org/10.1016/j.ceb.2015.01.002
  14. Palikaras K, Lionaki E and Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525-528 https://doi.org/10.1038/nature14300
  15. Shin JH, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702 https://doi.org/10.1016/j.cell.2011.02.010
  16. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235 https://doi.org/10.1038/nature07006
  17. Al Rawi S, Louvet-Vallee S, Djeddi A et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144-1147 https://doi.org/10.1126/science.1211878
  18. Sato M and Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141-1144 https://doi.org/10.1126/science.1210333
  19. Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23, 1085-1094 https://doi.org/10.1128/MCB.23.3.1085-1094.2003
  20. Kita T, Nishida H, Shibata H, Niimi S, Higuti T and Arakaki N (2009) Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation. J Biochem 146, 787-796 https://doi.org/10.1093/jb/mvp124
  21. Sin J, Andres AM, Taylor DJ et al (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12, 369-380 https://doi.org/10.1080/15548627.2015.1115172
  22. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 https://doi.org/10.1016/j.cell.2006.07.024
  23. Folmes CD, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency- dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14, 264-271 https://doi.org/10.1016/j.cmet.2011.06.011
  24. Prigione A, Fauler B, Lurz R, Lehrach H and Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721-733 https://doi.org/10.1002/stem.404
  25. Varum S, Rodrigues AS, Moura MB et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6, e20914 https://doi.org/10.1371/journal.pone.0020914
  26. Zeuschner D, Mildner K, Zaehres H and Scholer HR (2010) Induced pluripotent stem cells at nanoscale. Stem Cells Dev 19, 615-620 https://doi.org/10.1089/scd.2009.0159
  27. Kubli DA and Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111, 1208-1221 https://doi.org/10.1161/CIRCRESAHA.112.265819
  28. Djavaheri-Mergny M, Maiuri MC and Kroemer G (2010) Cross talk between apoptosis and autophagy by caspasemediated cleavage of Beclin 1. Oncogene 29, 1717-1719 https://doi.org/10.1038/onc.2009.519
  29. Pagliarini V, Wirawan E, Romagnoli A et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19, 1495-1504 https://doi.org/10.1038/cdd.2012.27
  30. Kim MJ, Yoon JH and Ryu JH (2016) Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 49, 529-535 https://doi.org/10.5483/BMBRep.2016.49.10.115
  31. Kang R, Zeng L, Xie Y et al (2016) A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy 12, 2374-2385 https://doi.org/10.1080/15548627.2016.1239678
  32. Kim MJ, Bae SH, Ryu JC et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12, 1272-1291 https://doi.org/10.1080/15548627.2016.1183081
  33. Cha MY, Kim DK and Mook-Jung I (2015) The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 47, e150 https://doi.org/10.1038/emm.2014.122
  34. Nah J, Yuan J and Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38, 381-389 https://doi.org/10.14348/molcells.2015.0034
  35. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
  36. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
  37. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100, 4078-4083 https://doi.org/10.1073/pnas.0737556100
  38. Hsieh CH, Shaltouki A, Gonzalez AE et al (2016) Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell 19, 709-724 https://doi.org/10.1016/j.stem.2016.08.002
  39. Ashrafi G, Schlehe JS, LaVoie MJ and Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206, 655-670 https://doi.org/10.1083/jcb.201401070
  40. Wang X, Winter D, Ashrafi G et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893-906 https://doi.org/10.1016/j.cell.2011.10.018
  41. Court FA and Coleman MP (2012) Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 35, 364-372 https://doi.org/10.1016/j.tins.2012.04.001
  42. Flatters SJ and Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245-257 https://doi.org/10.1016/j.pain.2006.01.037
  43. Pareyson D, Piscosquito G, Moroni I, Salsano E and Zeviani M (2013) Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 12, 1011-1024 https://doi.org/10.1016/S1474-4422(13)70158-3
  44. Rizzo F, Ronchi D, Salani S et al (2016) Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Hum Mol Genet 25, 4266-4281 https://doi.org/10.1093/hmg/ddw258
  45. Chourasia AH, Boland ML and Macleod KF (2015) Mitophagy and cancer. Cancer Metab 3, 4 https://doi.org/10.1186/s40170-015-0130-8
  46. Cesari R, Martin ES, Calin GA et al (2003) Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 100, 5956-5961 https://doi.org/10.1073/pnas.0931262100
  47. Veeriah S, Taylor BS, Meng S et al (2010) Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42, 77-82 https://doi.org/10.1038/ng.491
  48. Fujiwara M, Marusawa H, Wang HQ et al (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27, 6002-6011 https://doi.org/10.1038/onc.2008.199
  49. Letessier A, Garrido-Urbani S, Ginestier C et al (2007) Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene 26, 298-307 https://doi.org/10.1038/sj.onc.1209772
  50. Poulogiannis G, McIntyre RE, Dimitriadi M et al (2010) PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 107, 15145-15150 https://doi.org/10.1073/pnas.1009941107
  51. Zhang C, Lin M, Wu R et al (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108, 16259-16264 https://doi.org/10.1073/pnas.1113884108
  52. de Reynies A, Assie G, Rickman DS et al (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27, 1108-1115 https://doi.org/10.1200/JCO.2008.18.5678
  53. Fragoso MC, Almeida MQ, Mazzuco TL et al (2012) Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 166, 61-67 https://doi.org/10.1530/EJE-11-0806
  54. Calvisi DF, Ladu S, Gorden A et al (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117, 2713-2722 https://doi.org/10.1172/JCI31457
  55. Chourasia AH, Tracy K, Frankenberger C et al (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16, 1145-1163 https://doi.org/10.15252/embr.201540759
  56. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH and Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61, 6669-6673
  57. Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283, 10892-10903 https://doi.org/10.1074/jbc.M800102200
  58. Billia F, Hauck L, Konecny F, Rao V, Shen J and Mak TW (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 108, 9572-9577 https://doi.org/10.1073/pnas.1106291108
  59. Dorn GW 2nd (2010) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3, 374-383 https://doi.org/10.1007/s12265-010-9174-x
  60. Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13, 619-624 https://doi.org/10.1038/nm1574
  61. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 https://doi.org/10.1126/science.aad2459
  62. Kubli DA, Zhang X, Lee Y et al (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288, 915-926 https://doi.org/10.1074/jbc.M112.411363
  63. Siddall HK, Yellon DM, Ong SB et al (2013) Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One 8, e62400 https://doi.org/10.1371/journal.pone.0062400
  64. Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P and Gottlieb RA (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6, e20975 https://doi.org/10.1371/journal.pone.0020975
  65. Takamura A, Komatsu M, Hara T et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25, 795-800 https://doi.org/10.1101/gad.2016211
  66. Glick D, Zhang W, Beaton M et al (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32, 2570-2584 https://doi.org/10.1128/MCB.00167-12
  67. Williams JA and Ding WX (2015) A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 5, 2619-2642 https://doi.org/10.3390/biom5042619
  68. Sun N, Yun J, Liu J et al (2015) Measuring In Vivo Mitophagy. Mol Cell 60, 685-696 https://doi.org/10.1016/j.molcel.2015.10.009
  69. Rana A, Rera M and Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110, 8638-8643 https://doi.org/10.1073/pnas.1216197110
  70. Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22, 879-888 https://doi.org/10.1038/nm.4132
  71. Kanki T, Furukawa K and Yamashita S (2015) Mitophagy in yeast: Molecular mechanisms and physiological role. Biochim Biophys Acta 1853, 2756-2765 https://doi.org/10.1016/j.bbamcr.2015.01.005
  72. Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 https://doi.org/10.1038/nature14893
  73. Chu CT, Ji J, Dagda RK et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15, 1197-1205 https://doi.org/10.1038/ncb2837
  74. Allen GF, Toth R, James J and Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14, 1127-1135 https://doi.org/10.1038/embor.2013.168
  75. Kubli DA, Cortez MQ, Moyzis AG, Najor RH, Lee Y and Gustafsson AB (2015) PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS One 10, e0130707 https://doi.org/10.1371/journal.pone.0130707
  76. Sentelle RD, Senkal CE, Jiang W et al (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8, 831-838 https://doi.org/10.1038/nchembio.1059
  77. Ren M, Phoon CK and Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55, 1-16
  78. Kanki T, Wang K and Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6, 278-280 https://doi.org/10.4161/auto.6.2.10901
  79. Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191, 1367-1380 https://doi.org/10.1083/jcb.201007013
  80. Yamashita SI, Jin X, Furukawa K et al (2016) Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 215, 649-665 https://doi.org/10.1083/jcb.201605093
  81. Gomes LC and Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777, 860-866 https://doi.org/10.1016/j.bbabio.2008.05.442

Cited by

  1. Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-kB signaling in HCT116 human colorectal carcinoma cells vol.51, pp.6, 2018, https://doi.org/10.5483/BMBRep.2018.51.6.232