• Title/Summary/Keyword: selective Removal

Search Result 318, Processing Time 0.028 seconds

Pretreatment Process for Performance Improvement of SIES at Kori Unit 2 in Korea

  • Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon;Song, Myung-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.12-27
    • /
    • 2004
  • Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP #2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-l10m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank (WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and $1.534{\times}10_{-3}{\mu}Ci/cc$, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively.

  • PDF

Modified Cellulose for Heparin Binder (헤파린 제거제용 셀룰로오스의 개질)

  • 이원규;박기동
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 1994
  • Heparin binders (Cell-PALA) used for selective heparin removal from blood, were prepared by immobilizing a cationic polymer, poly(allylamine) (PALA), onto cellulose substrate by a novel method. Their absorbing capacity for heparin was compared with untreated cellulose control using heparin solution in vitro. The surface areas of obtained heparin binders and untreated cellulose were 1.36 and ($2.56{\mu} g$/$cm^2$, respectively. The amount of bound heparin to PALA immobilized celluloses was determined to be 0.16 - $0.30{\mu}g$/cm, which is much higher than that of untreated cellulose ($0.03{\mu} g$/$cm^2$). These results suggest that Cell-PALA materials can be utilized for a heparin removal system.

  • PDF

Selective Removal of Cu in Ferrous Scrap by Chlorine gas (염소가스에 의한 철 스크랩 중 Cu의 선택적 제거)

  • Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.54-60
    • /
    • 2018
  • The quality of steel produced from scrap can be adversely affected because of the buildup of tramp elements in recycled scrap. The tramp element of greatest concern is copper because of its effect on steel quality, even in small percentage quantities. In this study, possibility of removal of copper from ferrous scrap by using $Cl_2$ gas is experimentally examined in a small size experimental apparatus. Synthetic ferrous scraps containing copper were reacted with $Cl_2$ gas in various atmosphere. The copper was chloridized and evaporated, whereas iron was oxidized and was not reacted with Cl2 and oxygen mixture gas.

Effect of NOx Removal Efficiency according to Space Velocity and Linear Velocity of SCR Catalyst (SCR 촉매의 공간속도 및 선속도가 NOx 제거 효율에 미치는 영향)

  • Park, Jin-woo;Park, Sam-sik;Ku, Kun Woo;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • Air pollutants nitrogen oxides are inevitably generated in the combustion reaction. Its amount trend is steadily increasing because the rapid modern industrialization and population growth. For this reason, NOx is controlled to reducing the harmful components in the exhaust gas. So Marine Environment Protection Committee (MEPC) take effect 'Tier I', 'Tier II' of air pollution regulation in 2005 and 2011 respectively. According to NOx emissions are strictly regulated management of the vessel through them. In addition, since 2016 the regulation enter into force in the next step 'Tier III' was confirmed by MEPC 66th committee. It's 80% enhanced emissions limits than the 'Tier I' Alternatively these emission regulation, research is actively being carried out about exhaust gas after-treatment methods through the vessel application of Selective Catalytic Reduction(SCR). Therefore depending on the basic specification of cell density according to the Area velocity, Space velocity, Linear velocity is studied the effects of NOx removal efficiency

Effect of Surface Pretreatment on Film Properties Deposited by Electro-/Electroless Deposition in Cu Interconnection (반도체 구리 배선공정에서 표면 전처리가 이후 구리 전해/무전해 전착 박막에 미치는 영향)

  • Lim, Taeho;Kim, Jae Jeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This study investigated the effect of surface pretreatment, which removes native Cu oxides on Cu seed layer, on subsequent Cu electro-/electroless deposition in Cu interconnection. The native Cu oxides were removed by using citric acid-based solution frequently used in Cu chemical mechanical polishing process and the selective Cu oxide removal was successfully achieved by controlling the solution composition. The characterization of electro-/electrolessly deposited Cu films after the oxide removal was then performed in terms of film resistivity, surface roughness, etc. It was observed that the lowest film resistivity and surface roughness were obtained from the substrate whose native Cu oxides were selectively removed.

Selective Oxidation of Hydrogen Sulfide to Elemental Sulfur with Fe/MgO Catalysts in a Slurry Reactor

  • Lee, Eun-Ku;Jung, Kwang-Deog;Joo, Oh-Shim;Shul, Yong-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.281-284
    • /
    • 2005
  • The Fe/MgO catalysts with different Fe loadings (1, 4, 6, 15 and 30 wt% Fe) were prepared by a wet impregnation with iron nitrate as precursor. All of the catalysts were characterized by BET surface analyzer, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The maximum removal capacity of $H_2S$ was obtained with 15 wt% Fe/MgO catalyst which had the highest BET surface area among the measured catalysts. XRD of Fe/MgO catalysts showed that well dispersed Fe particles could be present on Fe/MgO with Fe loadings below 15 wt%. The crystallites of bulk $\alpha$-$Fe_2O_3$ became evident on 30 wt% Fe/MgO, which were confirmed by XRD. TPR profiles showed that the reducibility of Fe/MgO was strongly related to the loaded amounts of Fe on MgO support. Therefore, the highest removal efficiency of $H_2S$ in wet oxidation could be ascribed to a good dispersion and high reducibility of Fe/MgO catalyst. XPS studies indicated that the $H_2S$ oxidation with Fe/MgO could proceed via the redox mechanism ($Fe^{3+}\;{\leftrightarrow}\;Fe^{2+}$).

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2001
  • In this study, the improved throughput and stability in device fabrication could be obtained by applying CMP process to STi structue in 0.18 um semiconductor device. To employ the CMP process in STI structure, the Reverse Moat Process used to be added after STI Fill, as a result, the process became more complex and the defect were seriously increased than they had been,. Removal rate of each thin film in STI CMP was not uniform, so, the device must have been affected. That is, in case of excessive CMP, the damage on the active area was occurred, and in the case of insufficient CMP nitride remaining was happened on that area. Both of them deteriorated device characteristics. As a solution to these problems, the development of slurry having high removal rate and high oxide to nitride selectivity has been studied. The process using this slurry afford low defect levels, improved yield, and a simplified process flow. In this study, we evaluated the 'High Selectivity Slurry' to do a global planarization without reverse moat step, and also we evaluated EPD(Eend Point Detection) system with which 'in-situ end point detection' is possible.

  • PDF

Control of Soybean Sprout Rot Caused by Pythium deliense in Recirculated Production System

  • Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.280-283
    • /
    • 2003
  • A soybean-sprout rot epidemic occurred in a mass production soybean sprout factory in 2000 and 2001 in Korea, which caused up to 20% production loss. Among the causal pathogenic bacteria and fungi, Pythium deliense was found to be the dominant pathogen of severe root and hypocotyls rot, particularly in recirculating water system. An average of 90% of the isolated fungi from the rotted sprout on potato dextrose agar were Pythium sp. The fungal density of Pythium in the sampled water was monitored in the recycled water system for 1 year using a selective medium (com meal agar with Pimaricin, 10 mg; Rifampicin, 10 mg; and Ampicillin, 100 mg per 1 liter). The drained water from the soybean-sprout cultivation always had a certain amount of fungus in it. The removal of Pythium from the recycling water system must be thorough, safe, and environment friendly. However, the pathogen in the water was easily found even after ozone and chlorine treatments, which were devised on the recycling system for the removal of microorganisms. 5-$\mu\textrm{m}$ pore size filter was applied and was able to successfully control the disease. As the sprout industry increasingly shifts into mass production, the demand for water will increase continuously. Recycling water for sprout production is eco-friendly. However, a process must be devised to be able to first decompose organic matters before Pythium zoospores are filtered.

FUNDAMENTAL STUDY ON THE RECOVERY AND REMOVAL OF WHITE PHOSPHORUS FROM PHOSPHORUS SLUDGE

  • Jung, Joon-Oh
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Electro-thermal production of white phosphorus(WP, P4) generates substantial amount of highly toxic phossy water and sludges. Because of their high phosphorus contents and lack of reliable processing technology, large tonnages of these hazardous wastes have accumulated from current and past operations in the United States. In this study, two different methods for treatment of phosphorus sludge were investigated. These were bulk removal of WP by physical separation(froth flotation) and transformation of WP to oxyphosphorus compounds by air oxidation in the sludge medium. Kerosene, among other collectors, resulted in selective flotation of WP from the associated mineral gangue. Solvent action of kerosene occurring on the WP surface(by rendering WP particles hydrophobic) might produce the high selectivity of WP. The WP recovery in the froth was 79.3% from a sludge assaying 34.2% of WP. In the oxidation study, air gas was dispersed in the sludge medium by the rapid rotation of the impeller blades. The high level of sludge agitation intensity caused a fast completion of the oxidation reactions and it resulted in the high percentage conversion of WP to PO4-3 with PO3-3 making up almost all portion of oxyphosphorus compounds. The WP analysis on the treated sludge showed that supernatant solution and solid residue contained an average of 4.2 μg/L and 143 ppm respectively from the sludge containing about 26 g of WP. Further investigation will be required on operational factors to better understand the processes and achieve an optimum condition.

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 이경태;김상용;김창일;서용진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.90-93
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.18um semiconductor device. To employ in STI CMP, the reverse moat process has been added thus the process became complex and the defects were seriously increased. Removal rates of each thin films in STI CMP was not equal hence the devices must to be effected, that is, the damage was occured in the device dimension in the case of excessive CMP process and the nitride film was remained on the device dimension in the case of insufficient CMP process than these defects affect the device characteristics. To resolve these problems, the development of slurry for CMP with high removal rate and high selectivity between each thin films was studied then it can be prevent the reasons of many defects by reasons of many defects by simplification of process that directly apply CMP process to STI structure without the reverse moat pattern process.

  • PDF